АТЛАС КУБИЧЕСКИХ ПИРАМИД

И. А. Кушнир

От редакции. Нечасто учебник, а тем более, учебное пособие можно назвать уникальным. Но именно так Московский центр непрерывного математического образования оценил замечательную работу киевского «мэтра школьной геометрии», Соросовского учителя И. А. Кушнира. После рецензирования «Атласа» членами жюри Геометрической Олимпиады им. И. Ф. Шарыгина, и после тщательной проверки, а также редакции ЦНУ, он был издан достаточно большим тиражом (Атлас кубических пирамид. Учебное пособие. — М.: МЦНМО, 2012. — 72. с., ил.).

14 и 15 марта 2012 г. состоялись встречи И. А. Кушнира с учителями и методистами Москвы, посвящённые использованию «Атласа» в учебном процессе. Автору была высказана благодарность за пособие, актуальное не только в преддверии экзаменов, но в планомерном изучении геометрии в 10-11 классах.

Надеемся, что в скором времени «Атлас кубических пирамид» будет действенным помощником каждого российского старшеклассника в освоении стереометрии!

ВВЕДЕНИЕ

Прорыв в стереометрии

Стереометрию издавна изучать труднее, чем планиметрию. Старшеклассникам поначалу непривычны скрещивающиеся прямые, двугранные и многогранные углы, новые теоремы. Изучив теорию, ученик (да и учитель!) остро ощущает дефицит задач, где применяются новые теоремы и формулы. К таким задачам в первую очередь относятся задачи на доказательство, которых, как учебных, так и конкурсноолимпиадных, мало.

Сегодня такие задачи найдены. Пещерой Аладдина оказался... куб! Ключ к этой пещере — четыре точки куба, выбранные из его вершин, середин рёбер, середин диагоналей, центров симметрии граней. Они выбираются произвольно, а соединённые одна с другой образуют тетраэдр. Мы назовём его кубическим тетраэдром. Главным компонентом изучения такого тетраэдра в Атласе являются его четыре высоты. Это обусловлено тем, что решение задачи о пирамиде (не только тетраэдре) обычно начинается с вопроса о положении основания высоты. В правильных пирамидах ответ на него прост: высота попадает в центр основания (треугольника или правильного многоугольника). Однако в тетраэдре не одна высота, а четыре! И даже для правильной треугольной пирамиды далеко не каждый может доказать, что основанием высоты, опущенной на боковую грань, является ортоцентр этой грани. А если пирамида неправильная? А если тетраэдр неправильный?

Основанием высоты может быть центр окружности, описанной около треугольника, инцентр, ортоцентр и... не только.

В Атласе рассмотрены четыре высоты примерно для пяти десятков кубических тетраэ-

дров, около двухсот оснований высот. Вот тутто и понадобятся не только основные теоремы стереометрии, но и задачи-теоремы, например о том, что в прямоугольном тетраэдре вершина проектируется в ортоцентр основания.

В каждом из кубических тетраэдров (кроме правильного) хотя бы одна из задач окажется повышенной сложности. Но читатель застрахован — на все задачи Атласа есть решения (а иногда и несколькими способами). Более того, предоставлена возможность решить тетраэдр. Так что работы хватит. Приступайте!

Конструктор высот кубических пирамид

Как пользоваться Атласом?

Атлас можно использовать на каждом уроке в течение двух лет изучения стереометрии.

В первую очередь следует ознакомиться с обозначениями, принятыми для куба: вершины куба обозначают четырьмя буквами A, B, C, D и четырьмя буквами A_1 , B_1 , C_1 и D_1 , середины рёбер куба — точками T_i (i=1, 2, ..., 12), центры симметрии граней — точками O_i (i=1, 2, ..., 6).

Для построения кубической пирамиды (тетраэдра) выбирают четыре вершины из множества предложенных точек, например AA_1BO_1 .

В Атласе эти пирамиды систематизированы в зависимости от вершин куба, середин его сторон, диагоналей и центров симметрии граней.

Выбрав одну из таких пирамид, вы сразу можете приступать к работе: опустить перпендикуляр (высоту) из вершины на противоположную грань. В каждом из тетраэдров такое построение начинается словом «высоты». Поскольку в треугольной пирамиде четыре высоты, в каждом из тетраэдров исследованы все четыре случая.

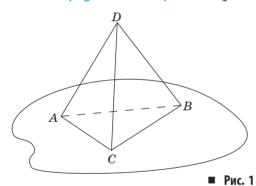
Обычно первые два очевидны, и тогда написано, например, отрезок AA_1 или BA и т. д.

Построение двух других высот будет удачным, если вы воспользуетесь признаками параллельности прямой и плоскости, признаками параллельности двух плоскостей, признаками перпендикулярности прямой и плоскости, признаком перпендикулярности двух плоскостей, свойствами прямоугольного тетраэдра. При этом часто придётся конструировать ситуации с помощью различных дополнительных построений как в плоскости, так и в пространстве. Нужно быть внимательным, чтобы распознать принадлежность грани тетраэдров сечению куба, что значительно разовьёт ваше пространственное представление.

Строгость доказательств, соединённая с вашей фантазией, конструктивными действиями, безусловно, даст позитивный результат не только при изучении стереометрии, но и в изучении математики после окончания школы.

О кубическом тетраэдре

Тетраэдр (от греческого τετραεδρα – четыре) – четырёхгранник, все грани которого – треугольники, треугольная пирамида (рис. 1).



Если все грани — правильные треугольники, то тетраэдр называют правильным.

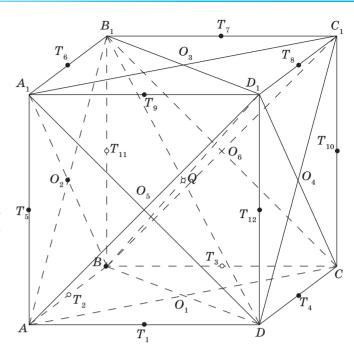
Рассмотрим куб $ABCDA_1B_1C_1D_1$ (puc. 2).

Назовём серединами куба середины его рёбер (точки $T_1,\ T_2,...,\ T_{12}$), центры симметрии его граней (точки $O_1,...,\ O_6$), а также центр симметрии куба — точку Q.

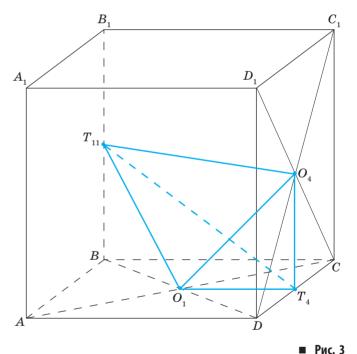
Тетраэдр, вершины которого — середины куба, назовём кубическим. Один из кубических тетраэдров изображён на *puc*. 3.

Читатель может сам создавать кубические тетраэдры, варьируя середины куба, например, сделав его вершинами середину ребра куба, диагонали и грани.

Каждый из таких тетраэдров — повод для создания новых задач: например, найти угол и расстояние между скрещивающимися рёбрами.



■ Рис. 2



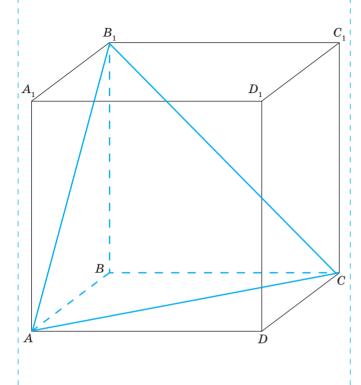
В Атласе рассмотрены четыре высоты кубических тетраэдров, создаваемых по определённой закономерности.

Обозначения

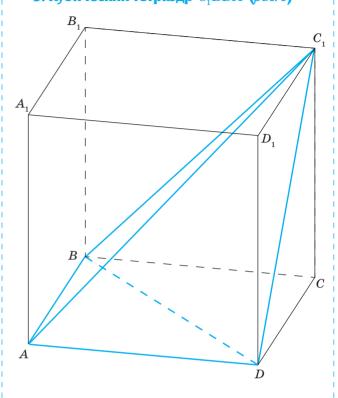
- 1) $ABCDA_1B_1C_1D_1$ куб, ребро которого равно a.
- 2) O_i (i=1, 2, ..., 6) центры симметрии граней.
 - 3) T_i (i=1,2,...,6) середины рёбер куба.

І. ЧЕТЫРЕ ВЕРШИНЫ КУБА

1. Кубический тетраэдр B_1ABC (рис. 4)

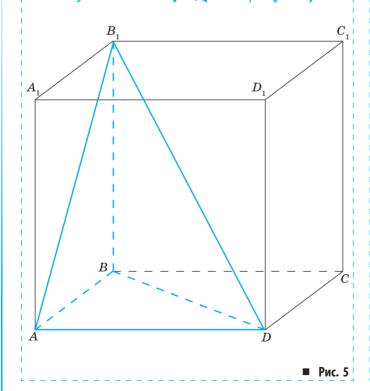


3. Кубический тетраэдр C_1BDA (рис. 6)

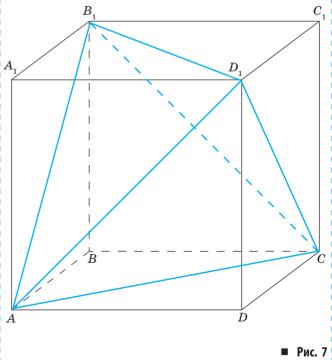


■ Рис. 4

2. Кубический тетраэдр ABB_1D (рис. 5)

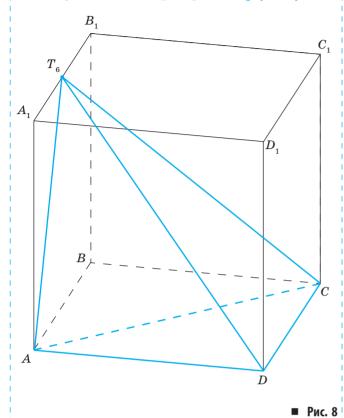


4. Кубический тетраэдр AB_1D_1C (рис. 7)

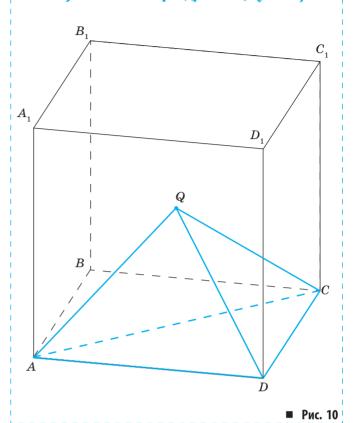


II. ТРИ ВЕРШИНЫ И ОДНА СЕРЕДИНА КУБА

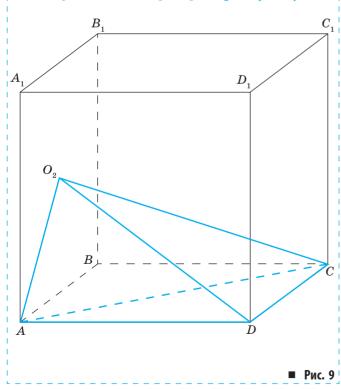
5. Кубический тетраэдр $ADCT_6$ (рис. 8)



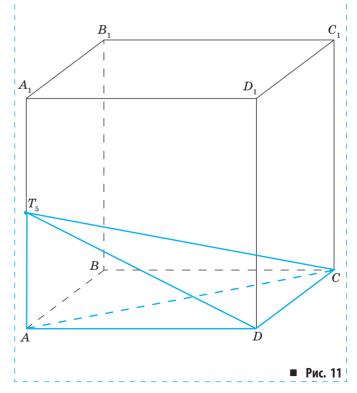
7. Кубический тетраэдр *ADCQ* (рис. 10)



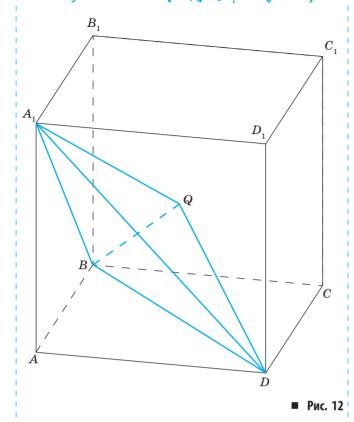
6. Кубический тетраэдр AO_2CD (рис. 9)



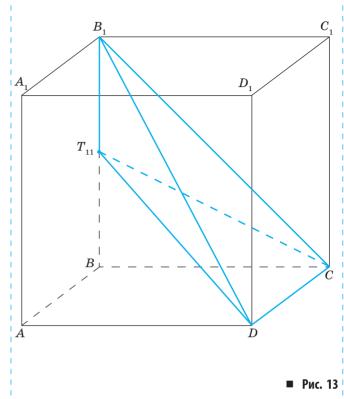
8. Кубический тетраэдр AT_5CD (рис. 11)



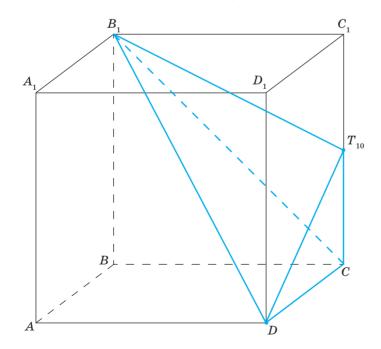
9. Кубический тетраэдр QA_1BD (рис. 12)



10. Кубический тетраэдр $T_{11}B_1CD$ (рис. 13)

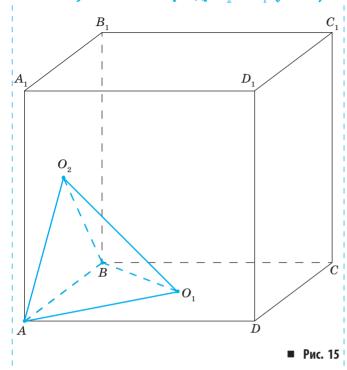


11. Кубический тетраэдр $B_1T_{10}CD$ (рис. 14)

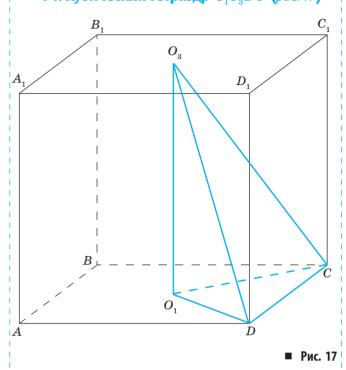


III. ДВЕ ВЕРШИНЫ КУБА И ДВЕ СЕРЕДИНЫ КУБА

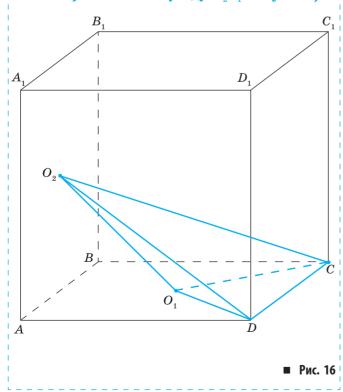
12. Кубический тетраэдр O_2ABO_1 (рис. 15)



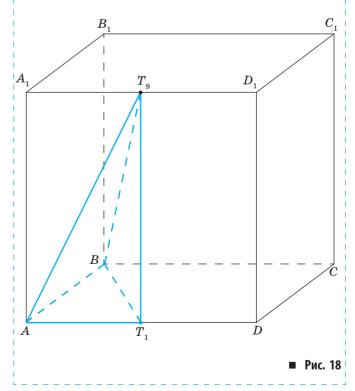
14. Кубический тетраэдр O_1O_3DC (рис. 17)



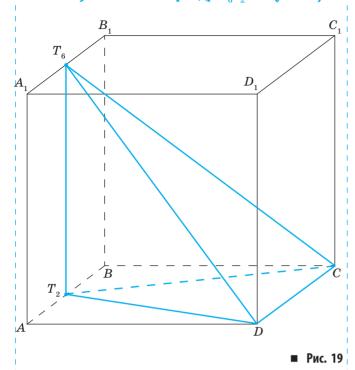
13. Кубический тетраэдр O_2O_1CD (рис. 16)



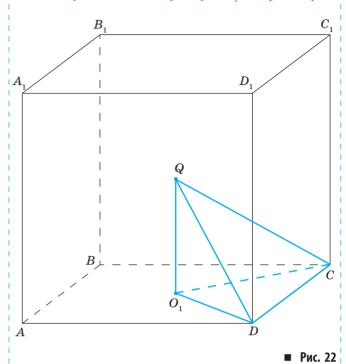
15. Кубический тетраэдр T_1ABT_9 (рис. 18)



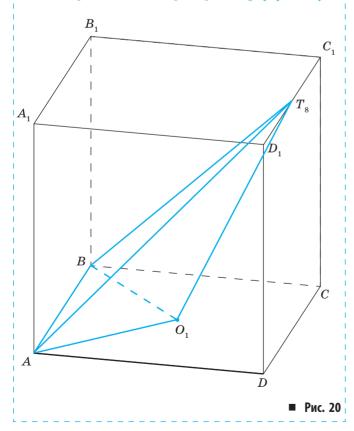
16. Кубический тетраэдр T_6T_2DC (рис. 19)



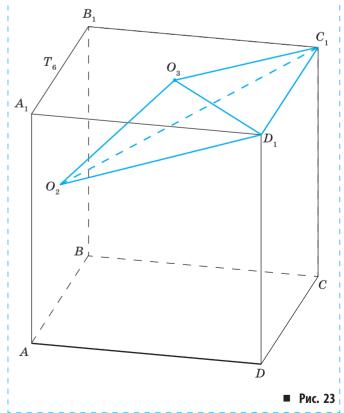
18. Кубический тетраэдр QO_1DC (рис. 22)



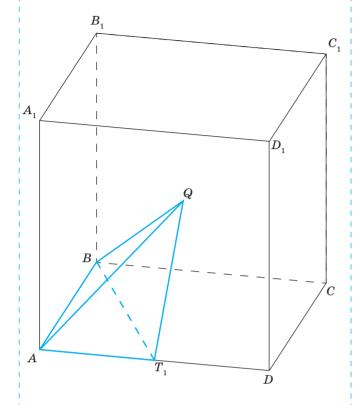
17. Кубический тетраэдр ABT_8O_1 (рис. 20)



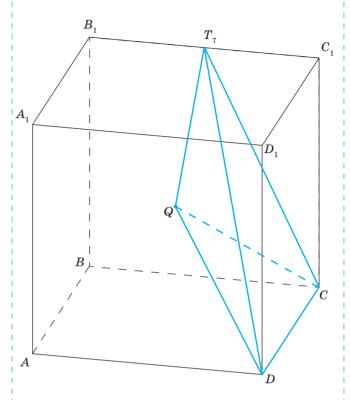
19. Кубический тетраэдр $O_2O_3D_1C_1$ (рис. 23)



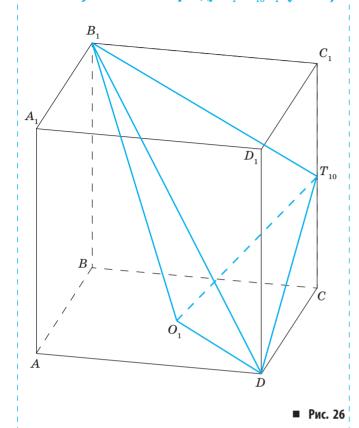
20. Кубический тетраэдр BT_1AQ (рис. 24)



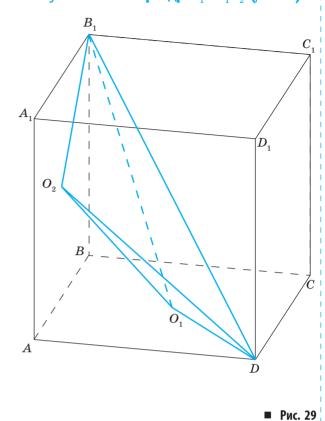
21. Кубический тетраэдр $DCQT_7$ (рис. 25)



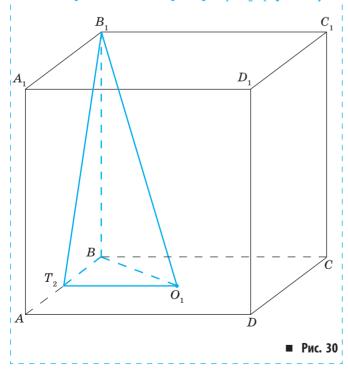
22. Кубический тетраэдр $O_1DT_{10}B_1$ (рис. 26)



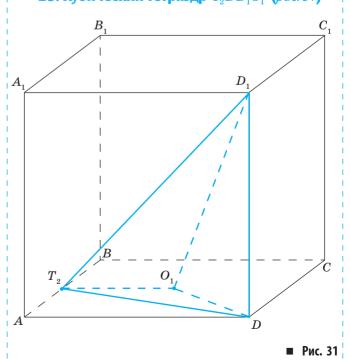
23. Кубический тетраэдр $B_1DO_1O_2$ (рис. 29)



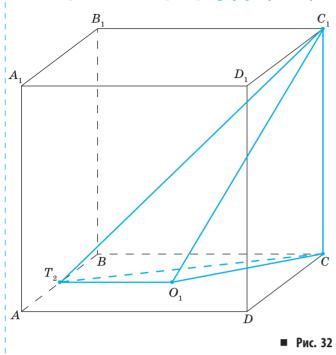
24. Кубический тетраэдр $B_1BT_2O_1$ (рис. 30)



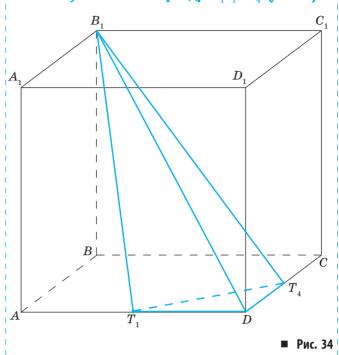
25. Кубический тетраэдр $T_2DD_1O_1$ (рис. 31)



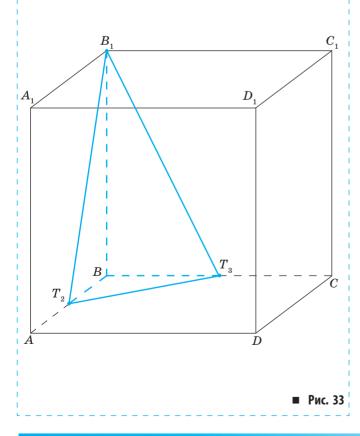
26. Кубический тетраэдр $T_2O_1C_1C$ (рис. 32)



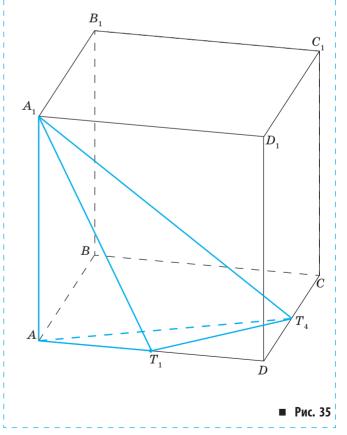
28. Кубический тетраэдр $B_1T_1DT_4$ (рис. 34)



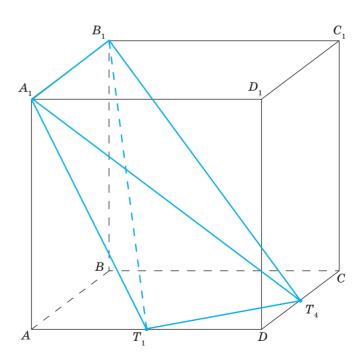
27. Кубический тетраэдр $B_1T_2T_3B$ (рис. 33)

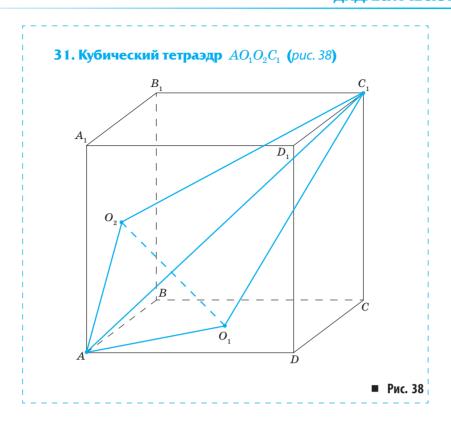


29. Кубический тетраэдр $AA_1T_1T_4$ (рис. 35)

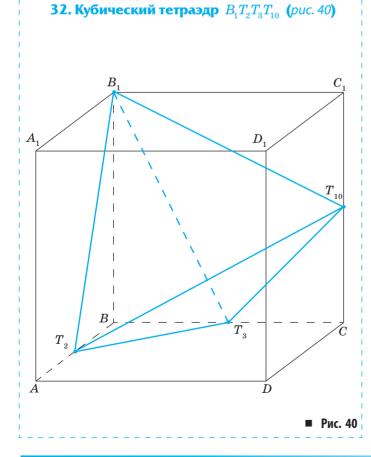


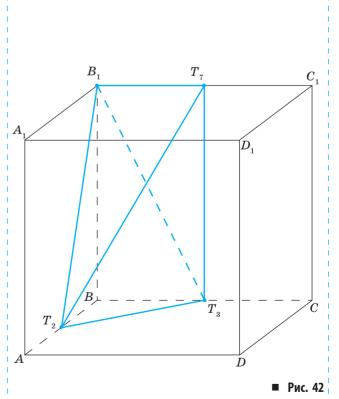
30. Кубический тетраэдр $A_1B_1T_1T_4$ (рис. 36)





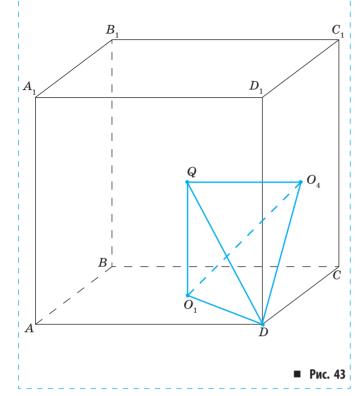
IV. ОДНА ВЕРШИНА КУБА И ТРИ СЕРЕДИНЫ



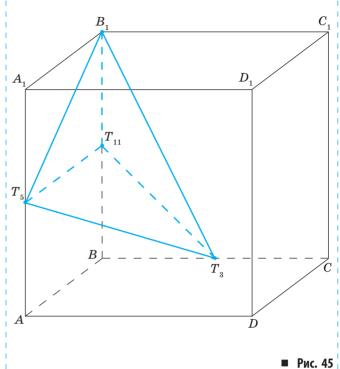


33. Кубический тетраэдр $B_1T_2T_3T_7$ (рис. 42)

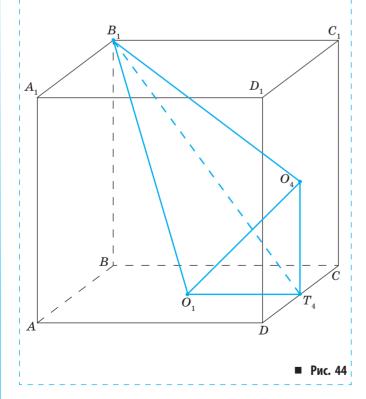
34. Кубический тетраэдр O_1DO_4Q (рис. 43)



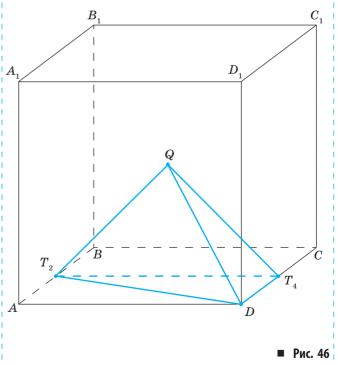
36. Кубический тетраэдр $B_1T_{11}T_3T_5$ (рис. 45)



35. Кубический тетраэдр $B_1O_1O_4T_4$ (рис. 44)



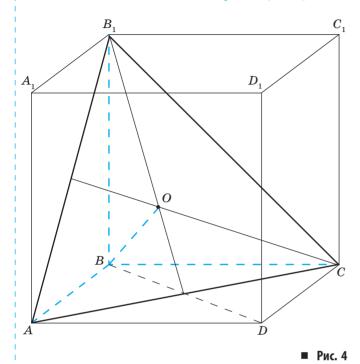
37. Кубический тетраэдр DQT_4T_2 (рис. 46)



РЕШЕНИЯ

І. Четыре вершины куба

1. Кубический тетраэдр B_1ABC (рис. 4)



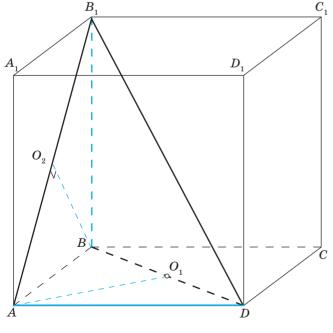
Высоты:

- 1) Из вершины A на грань BB_1C отрезок $AB \ (AB \perp BB_1, \ AB \perp BC)$.
- 2) Из вершины C на грань ABB_1 отрезок CB ($CB \perp BB_1$, $CB \perp AB$).
- 3) Из вершины B_1 на грань ABC отрезок B_1B ($B_1B \perp AB$, $B_1B \perp BC$).
- 4) Из вершины B на грань AB_1C отрезок BO. Действительно, поскольку

$$AC = AB_1 = B_1C$$
,

основанием высоты, опущенной из вершины B, будет центр O равностороннего треугольника AB_1C .

2. Кубический тетраэдр ABB_1D (рис. 5)



Высоты:

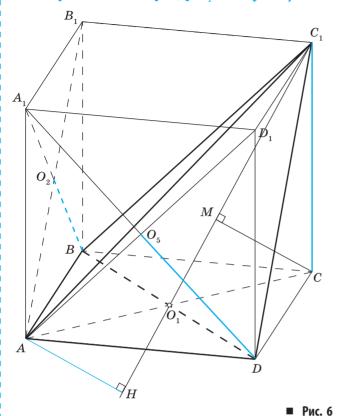
- 1) Из вершины B_1 на грань ABD отрезок B_1B ($B_1B \perp AB$, $B_1B \perp BC$).
- 2) Из вершины A на грань B_1BD отрезок AO_1 . Действительно, поскольку

$$BB_1 \perp (ABD)$$
,

грани ABD и B_1BD перпендикулярны, поэтому высота AO_1 треугольника ABD будет высотой тетраэдра.

- 3) Из вершины D на грань AB_1B ребро DA ($DA \perp AB$, $DA \perp AB_1$).
- 4) Из вершины B на грань AB_1D отрезок BO_2 . Действительно, плоскости AB_1D и ABB_1 перпендикулярны, поэтому высотой тетраэдра будет высота треугольника ABB_1 отрезок BO_2 .

3. Кубический тетраэдр C_1BDA (рис. 6)



Высоты:

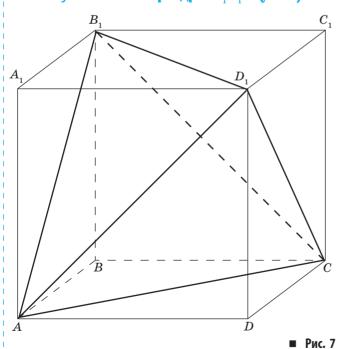
1) Из вершины $C_{\scriptscriptstyle 1}$ на грань ABD — отрезок $C_{\scriptscriptstyle 1}C_{\scriptscriptstyle 1}$

- 2) Из вершины D на плоскость ABC_1 отрезок DO_5 . Действительно, грань ABC_1 лежит в плоскости AD_1C_1B . Отрезки DO_5 и AD_1 перпендикулярны (диагонали квадрата AA_1D_1D), и отрезок BA перпендикулярен плоскости AA_1D_1D , а DO_5 лежит в этой плоскости. Итак, $DO_5 \perp AD_1$ и $DO_5 \perp AB$, следовательно, отрезок DO_5 перпендикулярен грани ABC_1 .
- 3) Из вершины B на грань AC_1D отрезок BO_2 . Действительно, плоскости AC_1D и ABB_1 перпендикулярны и пересекаются по прямой AB_1 , $BO_2 \perp AB_1$, значит, $BO_2 \perp (AC_1D)$.
- 4) Из вершины A на грань C_1BD отрезок AH. Опустим из точки C перпендикуляр на грань BC_1D . Поскольку CC_1BD прямоугольный тетраэдр, в основании которого лежит равносторонний треугольник BC_1D , точка C проектируется в точку M центр этого треугольника. Прямая C_1O_1 лежит в плоскости BC_1D . В плоскости AC_1C проведём $AH \parallel CM$. Поскольку отрезок CM перпендикулярен плоскости C_1BD и $AH \parallel CM$, мы получаем, что

$$AH \perp (C_1BD)$$
.

Заметим, что все высоты этого тетраэдра находятся вне его! Такие тетраэдры назовём вневысотными.

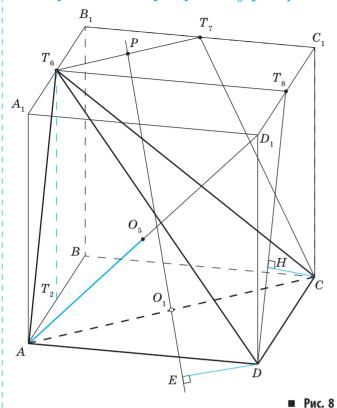
4. Кубический тетраэдр AB_1D_1C (рис. 7)



Поскольку рёбра тетраэдра AB_1D_1C являются диагоналями граней куба $ABCDA_1B_1C_1D_1$, рассматриваемый тетраэдр правильный и его высоты проходят через центр соответствующего равностороннего треугольника (точка O).

II. Три вершины и одна середина куба

5. Кубический тетраэдр $ADCT_6$ (рис. 8)



Высоты:

- 1) Из вершины T_6 на грань ACD отрезок T_6T_2 . Он перпендикулярен плоскости ABCD, а значит, и грани ADC.
- 2) Из вершины A на грань T_6CD отрезок AO_5

$$(AO_5 \perp A_1D, AO_5 \perp CD, AO_5 \perp (A_1CD)).$$

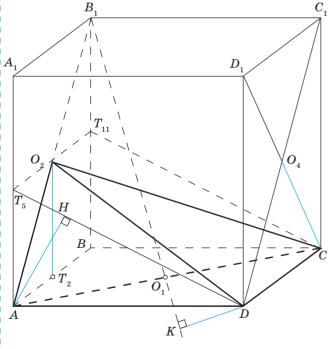
3) Из вершины C на грань T_6AD — отрезок CH. Эта грань лежит в плоскости AT_6T_8D . В плоскости DD_1C_1C из точки C проведём перпендикуляр CH к отрезку T_8D . Поскольку ребро AD перпендикулярно грани DD_1C_1C , получаем, что $CH \perp AD$, а значит,

$$CH \perp (AT_6T_8D).$$

Следовательно, СН — высота тетраэдра.

4) Из вершины D на грань AT_6C — отрезок DE. Действительно, грань AT_6C принадлежит равнобедренной трапеции AT_6T_7C . Основание высоты принадлежит оси симметрии (PO_1).

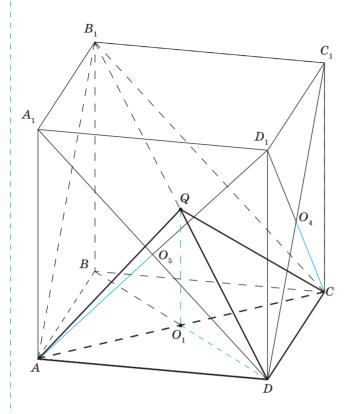
6. Кубический тетраэдр AO_2CD (рис. 9)



Высоты:

- 1) Из вершины O_2 на грань ACD отрезок O_2T_2 , перпендикулярный плоскости ABCD, а значит, и грани ACD.
- 2) Из вершины C на грань O_2DA отрезок CO_4 . Эта грань лежит в плоскости AB_1C_1D , а отрезок CO_4 перпендикулярен этой плоскости, следовательно, является высотой тетраэдра.
- 3) Из вершины A на грань DO_2C отрезок AH. Эта грань лежит в плоскости $T_5T_{11}CD$, и высота AH треугольника AT_5D будет высотой тетраэдра.
- 4) Из вершины D на грань AO_2C отрезок DK. Основание высоты точка K принадлежит оси симметрии равнобедренного треугольника AB_1C .

7. Кубический тетраэдр ADCQ (рис. 10)

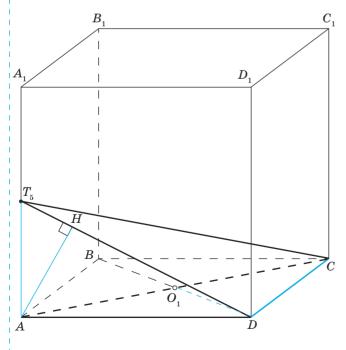


Высоты:

- 1) Из вершины Q на грань ACD отрезок QO_1 .
- 2) Из вершины A на грань QDC отрезок AO_5 . Эта грань лежит в плоскости A_1B_1CD . Поскольку отрезок AO_5 перпендикулярен A_1D и DC, он перпендикулярен этой плоскости, а значит, является высотой тетраэдра.
- 3) Из вершины D на грань AQC отрезок DO_1 .
- 4) Из вершины C на грань AQD отрезок CO_4 . Эта грань лежит в плоскости AB_1C_1D . Отрезок CO_4 перпендикулярен этой плоскости, следовательно, является высотой тетраэдра.

■ Рис. 10

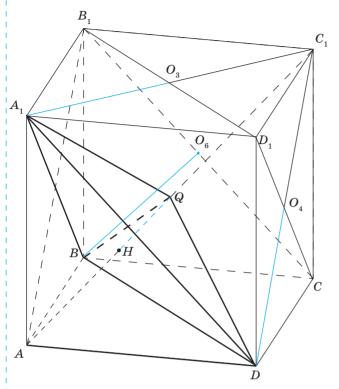
8. Кубический тетраэдр AT_5CD (рис. 11)



Высоты:

- 1) Из вершины $T_{\scriptscriptstyle 5}$ на грань ADC отрезок $T_{\scriptscriptstyle 5}A$.
- 2) Из вершины D на грань AT_5C отрезок DO_1 .
- 3) Из вершины A на грань DT_5C отрезок AH, являющийся высотой прямоугольного треугольника AT_5D ($AH \perp T_5D$, $CD \perp AH$).
- 4) Из вершины C на грань AT_5D отрезок CD, поскольку эта грань принадлежит грани куба AA_1B_1B .

9. Кубический тетраэдр QA_1BD (рис. 12)



Тетраэдр QA_1BD — правильная треугольная пирамида с вершиной Q и основанием A_1BD . Такая пирамида является ортоцентрическим тетраэдром, а значит, основания всех четырёх высот — ортоцентры граней.

Заметим, что все грани, кроме треугольника A_1DB , — тупоугольные треугольники.

Высоты:

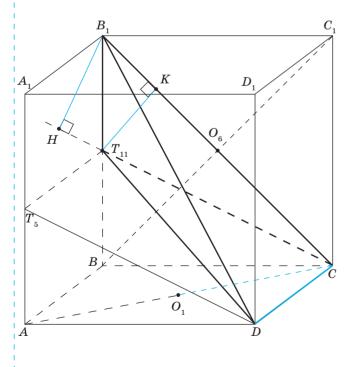
1) Из вершины Q на грань A_1BD — отрезок QH. Действительно,

$$AC_1 \perp BD$$
 и $AC_1 \perp A_1B$.

- 2) Из вершины D на грань $A_{\scriptscriptstyle 1}BQ$ отрезок $DO_{\scriptscriptstyle 4}$.
- 3) Из вершины B на грань A_1QD отревок BO_6 .
- 4) Из вершины A_1 на грань BQD отрезок A_1O_3 .

■ Рис. 12

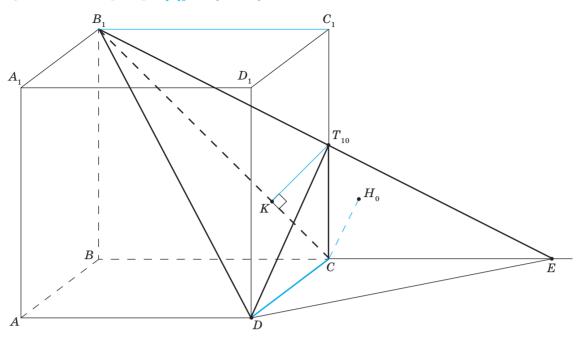
10. Кубический тетраэдр $T_{11}B_1CD$ (рис. 13)



Высоты:

- 1) Из вершины D на грань B_1CT_{11} отрезок DC, поскольку эта грань принадлежит грани куба BB_1C_1C .
- 2) Из вершины C на грань $T_{11}B_1D$ отрезок CO_1 . Эта грань принадлежит плоскости BB_1D_1D , а отрезок CO_1 перпендикулярен этой плоскости ($CO_1 \perp BD$, $CO_1 \perp BB_1$).
- 3) Из вершины T_{11} на грань B_1DC отрезок $T_{11}K$. Поскольку $C_1O_6 \perp B_1C$, $C_1O_6 \perp DC$, получаем, что отрезок C_1O_6 перпендикулярен грани DCB_1 . Если в треугольнике $T_{11}B_1C$ провести отрезок $T_{11}K$, параллельный C_1O_6 , то он и будет искомой высотой.
- 4) Из вершины B_1 на грань $T_{11}CD$ отрезок B_1H . Докажем, что грани $B_1T_{11}C$ и $T_{11}CD$ перпендикулярны. Действительно, отрезок T_5T_{11} перпендикулярен грани куба BB_1C_1C , а грань $T_{11}CD$ лежит в плоскости $T_5T_{11}CD$, перпендикулярной BB_1C_1C , и $B_1T_{11}C$ содержится в BB_1C_1C . Итак, искомой высотой является перпендикуляр B_1H , опущенный из точки B_1 на прямую $T_{11}C$.

11. Кубический тетраэдр $B_1T_{10}CD$ (рис. 14)



■ Puc. 14

Высоты:

- 1) Из вершины D на грань $B_1T_{10}C$ ребро DC.
- 2) Из вершины B_1 на грань $DT_{10}C$ отрезок B_1C_1 , поскольку эта грань лежит в грани куба DD_1C_1C .
- 3) Из вершины C на грань $B_1T_{10}D$ отрезок CH_0 . Построим плоскость π , которой принадлежит грань B_1DT_{10} . Продлим ребро BC до пересечения с этой плоскостью в точке E. Грань $DT_{10}E$ прямоугольного тетраэдра $DT_{10}EC$ явля-

ется продолжением грани B_1DT_{10} , и единственный перпендикуляр из точки C на грань $B_1T_{10}D$ есть высота прямоугольного тетраэдра. В таком случае она попадает в ортоцентр H_0 противолежащей грани $DT_{10}E$.

4) Из вершины T_{10} на грань B_1DC — отрезок $T_{10}K$. Эта грань перпендикулярна грани куба BB_1CC_1 (ребро DC перпендикулярно этой грани). Высота $T_{10}K$ треугольника $B_1T_{10}C$ будет высотой тетраэдра.

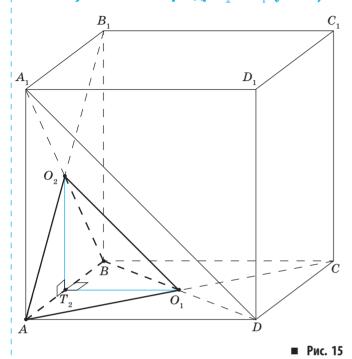
ЦИТАТА НОМЕРА

Геометрия остаётся основным источником развития богатой и плодотворной математической интуиции, которая, в свою очередь, придаёт ещё большие творческие силы математикам. Большинство математиков мыслит геометрическими схемами, даже если и следа не остаётся от этих «строительных» лесов, когда они представляют свой окончательный результат в аналитической форме. Высказывание Платона, что «геометрия приближает разум к истине», всё ещё остаётся в силе.

М. Клайн

III. Две вершины куба и две середины куба

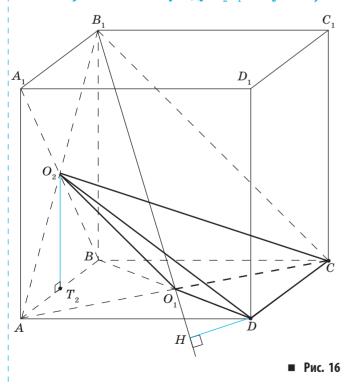
12. Кубический тетраэдр $O_{2}ABO_{1}$ (рис. 15)



Высоты:

- 1) Из вершины O_2 на грань ABO_1 отрезок O_2T_2 .
- 2) Из вершины A на грань O_2BO_1 отрезок AK. Эта грань принадлежит плоскости A_1BD . Тетраэдр AA_1DB правильная треугольная пирамида, и перпендикуляр AK, опущенный из вершины A на грань A_1DB , его высота (точка K центр правильного треугольника A_1DB).
- 3) Из вершины O_1 на грань ABO_2 отрезок O_1T_2 .
- 4) Из вершины B на грань O_2O_1A отрезок BN, где точка N центр правильного треугольника AB_1C (аналогично п. 2).

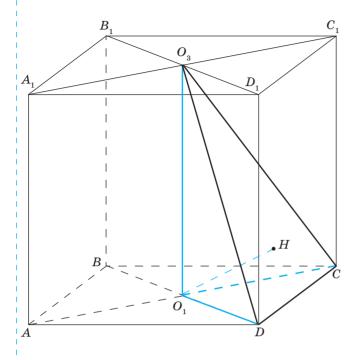
13. Кубический тетраэдр O_9O_1CD (рис. 16)



Высоты:

- 1) Из вершины O_2 на грань O_1CD отрезок O_2T_2 .
- 2) Из вершины O_1 на грань O_2CD отрезок O_1K , где точка K центр окружности, описанной около треугольника O_2CD . Действительно, поскольку $O_1O_2=O_1D=O_1C$ (каждое ребро равно $\frac{a\sqrt{2}}{2}$, где a длина ребра куба), основание высоты равноудалено от вершин треугольника O_2CD .
- 3) Из вершины D на грань CO_1O_2 отрезок DH. Грань CO_1O_2 лежит в плоскости AB_1C . Поскольку CD=DA, точка D равноудалена от вершин куба A и C и основание H перпендикуляра, опущенного из точки D на грань AB_1C (а значит, и на CO_1O_2), принадлежит оси симметрии B_1O_1 треугольника AB_1C .
- 4) Из точки C на грань O_1O_2D отрезок CM, где точка M лежит на оси симметрии A_1O_1 треугольника A_1BD и строится аналогично п. 3.

14. Кубический тетраэдр O_1O_3DC (рис. 17)

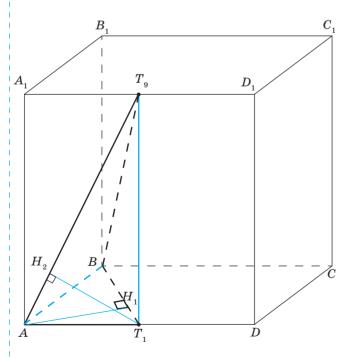


Высоты:

- 1) Из вершины O_3 на грань O_1CD отрезок O_3O_1 .
- 2) Из вершины C на грань O_1O_3D отрезок CO_1 .
- 3) Из вершины D на грань O_1O_3C отрезок DO_1 .
- 4) Из вершины O_1 на грань DO_3C отрезок O_1H , где точка H ортоцентр грани DO_3C . Действительно, тетраэдр O_1O_3DC прямоугольный, и его вершина (в данном случае точка O_1) проектируется в ортоцентр противолежащей грани.

■ Рис. 17

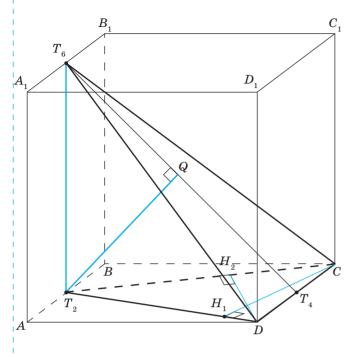
15. Кубический тетраэдр T_1ABT_9 (рис. 18)



Высоты

- 1) Из вершины T_9 на грань T_1AB отрезок T_9T_1 .
- 2) Из вершины A на грань T_1BT_9 отрезок AH_1 . Действительно, грани T_1BT_9 и ABT_1 взаимно перпендикулярны, поэтому высота AH_1 треугольника ABT_1 является высотой тетраэдра.
- 3) Из вершины B на грань AT_1T_9 отрезок AB.
- 4) Из вершины T_1 на грань T_9AB отрезок T_1H_2 . Действительно, грани AT_1T_9 и T_9AB взачимно перпендикулярны, поэтому высота T_1H_2 треугольника AT_1T_9 является высотой тетраэдра.

16. Кубический тетраэдр T_6T_2DC (рис. 19)

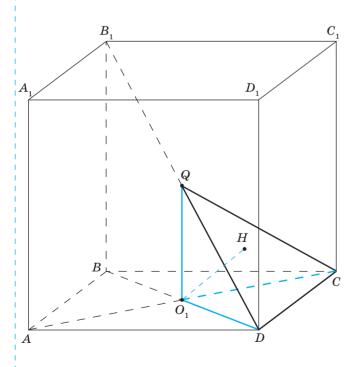


Высоты:

- 1) Из вершины $T_{\scriptscriptstyle 6}$ на грань $T_{\scriptscriptstyle 2}DC$ отрезок $T_{\scriptscriptstyle 6}T_{\scriptscriptstyle 2}.$
- 2) Из вершины T_2 на грань T_6DC отрезок T_2Q . Поскольку плоскости T_6DC и $T_2T_6T_4$ взаимно перпендикулярны, высота T_2Q в треугольнике $T_2T_6T_4$ будет высотой тетраэдра.
- 3) Из вершины C на грань T_2T_6D отрезок CH_1 . Поскольку плоскости T_2CD и T_2T_6D взаимно перпендикулярны, высота CH_1 треугольника T_2CD будет высотой тетраэдра.
- 4) Из вершины D на грань T_2T_6C отрезок DH_2 . Поскольку плоскости T_2CD и T_2T_6C взаимно перпендикулярны, высота DH_2 треугольника T_2CD будет высотой тетраэдра.

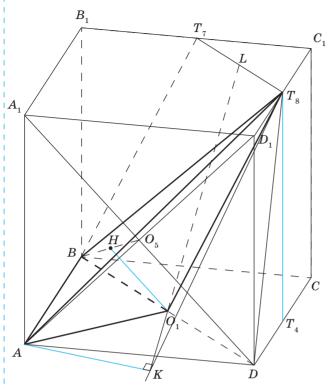
■ Рис. 19

18. Кубический тетраэдр QO_1DC (рис. 22)



Тетраэдр QO_1DC прямоугольный: его рёбра QO_1 , DO_1 , CO_1 являются высотами, опущенными из вершин Q, D, C на соответствующие грани, а основанием высоты, опущенной из вершины O_1 , будет ортоцентр H треугольника QDC.

17. Кубический тетраэдр ABT_8O_1 (рис. 20)



■ Рис. 20

Высоты:

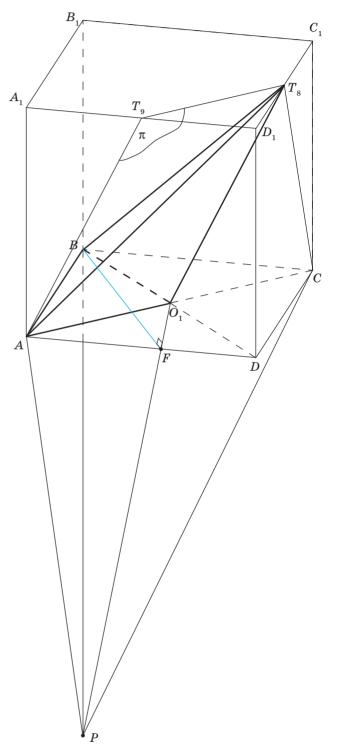
- 1) Из вершины T_8 на грань ABO_1 отрезок T_8T_4 .
- 2) Из вершины A на грань BT_8O_1 отрезок AK. Поскольку грань BT_8O_1 лежит в плоскости BT_8D , основание K перпендикуляра, опущенного из вершины A, попадёт на ось симметрии O_1L трапеции BT_7T_8D .
- 3) Из вершины O_1 на грань ABT_8 отрезок O_1H . Эта грань лежит в плоскости AD_1C_1B . Поскольку отрезок DO_5 перпендикулярен этой плоскости, перпендикуляр, опущенный из точки O_1 на эту плоскость, параллелен отрезку DO_5 , т. е. это средняя линия O_1H в треугольнике O_5BD

$$(O_1H = \frac{1}{2}DO_5).$$

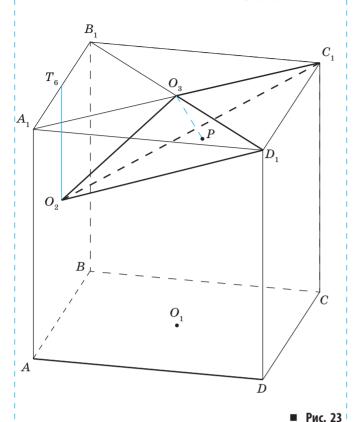
4) Из вершины B на грань AT_8O_1 — отрезок BF. Построим сечение AT_9T_8C (плоскость π), которому принадлежит грань AT_8O_1 (puc. 21).

Прямая B_1B пересечёт плоскость π в некоторой точке P. Плоскость APC, как и грань AT_8O_1 , принадлежит плоскости π . Опустить

перпендикуляр из вершины B на плоскость AT_8O_1 — значит опустить перпендикуляр на плоскость π , или провести высоту в тетраэдре BAPC, а он прямоугольный (!) (B — вершина, APC — основание). Основанием F высоты будет ортоцентр треугольника APC.



19. Кубический тетраэдр $O_2O_3D_1C_1$ (рис. 23)



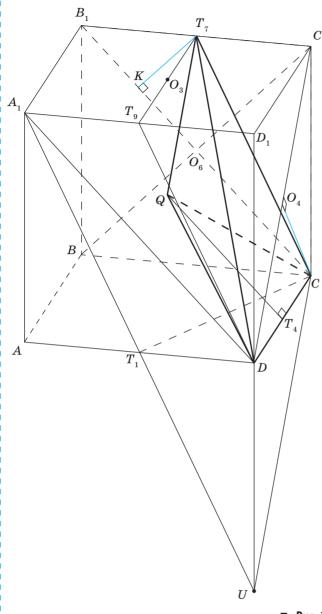
Высоты:

- 1) Из вершины O_2 на грань $O_3D_1C_1$ отрезок O_2T_6 .
- 2) Из вершины D_1 на грань $O_2O_3C_1$ отрезок D_1K . Эта грань лежит в плоскости A_1BC_1 , а значит, основание K перпендикуляра, опущенного из вершины D_1 на $O_2O_3C_1$, принадлежит прямой BO_3 (вне куба).
- 3) Из вершины C_1 на грань $D_1O_3O_2$ отрезок C_1M , где точка M принадлежит прямой AO_3 . Построение аналогично п. 2.
- 4) Из вершины O_3 на грань $O_2D_1C_1$ отрезок O_3P . Поскольку $O_3O_2=O_3D_1=O_3C_1$, основанием перпендикуляра, опущенного из вершины O_3 , является центр окружности, описанной около треугольника $O_2D_1C_1$.

20. Кубический тетраэдр BT_1AQ (рис. 24)

- 3) Из вершины B на плоскость AT_1Q отрезок BO_2 . Эта грань лежит в плоскости AB_1C_1D , а отрезок BO_2 перпендикулярен этой плоскости.
- 4) Из вершины A на грань BT_1Q отрезок AH, где точка H ортоцентр треугольника BPT_1 . Продлим отрезок AA_1 за точку A. Грань BQT_1 лежит в плоскости BD_1T_1 . Прямая D_1T_1 пересекает прямую A_1A в точке P. Тетраэдр ABT_1P прямоугольный. Значит, его высота, опущенная из вершины A, содержит ортоцентр треугольника BPT_1 .

21. Кубический тетраэдр $DCQT_7$ (рис. 25)



Высоты:

1) Из вершины Q на грань DT_7C — отрезок QP, где точка P — центр окружности, описанной около треугольника $T_4T_7T_9$. Грань DT_7C лежит в плоскости DT_9T_7C . Рассмотрим тетраэдр $QT_4T_7T_9$ ($T_4 \in DC$). Поскольку

$$QT_4 = QT_7 = QT_9,$$

основанием высоты, опущенной из вершины Q, является центр окружности, описанной около треугольника $T_4T_7T_6$.

- 2) Из вершины T_7 на грань QDC отрезок T_7K . Эта грань лежит в плоскости A_1B_1CD . Перпендикуляр, опущенный из вершины T_7 на эту плоскость, отрезок T_7K , где точка K середина отрезка O_6B_1 (T_7K высота треугольника T_7B_1C).
- 3) Из вершины C на грань DQT_7 отрезок CO_4 . Эта грань лежит в плоскости DAB_1C_1 . Поскольку отрезок CO_4 перпендикулярен этой плоскости, он является высотой тетраэдра.
- 4) Из вершины D на грань QCT_7 отрезок DH, где точка H ортоцентр треугольника T_1CU . Грань QCT_7 лежит в плоскости $A_1T_7CT_1$. Прямая A_1T_1 пересекает прямую D_1D в точке U, $DU = DD_1$. Тетраэдр $UDCT_1$ прямоугольный. Его высота, опущенная из вершины D, пересекает грань T_1CU в ортоцентре этого треугольника.

■ Puc. 25

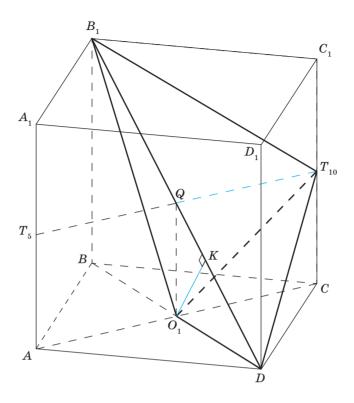
ЦИТАТА НОМЕРА

... И в решении любой задачи присутствует крупица открытия: задача может быть скромной, но если она бросает вызов вашей любознательности и заставляет вас быть изобретательными, и если вы решаете её собственными силами, то вы сможете испытать ведущее к открытию напряжение ума и насладиться радостью победы.

Такие эмоции, пережитые в восприимчивом возрасте, могут пробудить вкус к умственной работе и на всю жизнь оставить свой отпечаток на уме и характере.

Д. Пойа

22. Кубический тетраэдр $O_1DT_{10}B_1$ (рис. 26)



■ Рис. 26

Высоты:

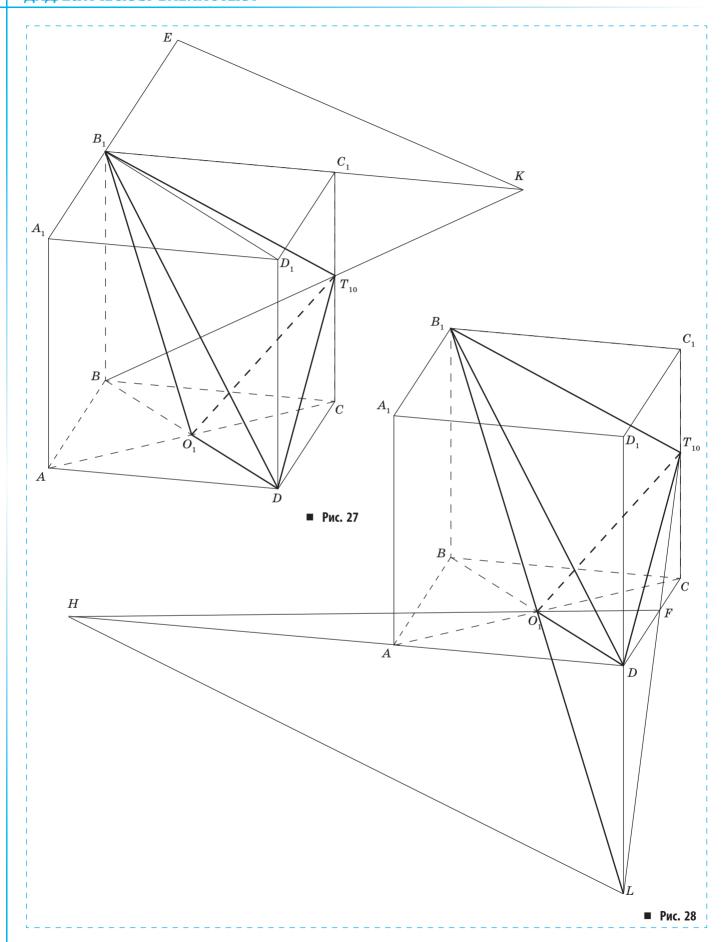
1) Из вершины O_1 на грань $B_1T_{10}D$ — отрезок O_1K . Докажем, что плоскости B_1O_1D и DB_1T_{10} перпендикулярны. Проведём прямую T_5T_{10} . Поскольку эта прямая содержит точку Q, она перпендикулярна прямой O_1Q , принадлежащей плоскости O_1B_1D . Из того, что $T_5T_{10}\parallel AC$, следует, что $T_5T_{10}\perp B_1D$ (обобщается теорема о трёх перпендикулярах). Итак, $T_5T_{10}\perp O_1Q$ и $T_5T_{10}\perp B_1D$, значит, прямая T_5T_{10} (QT_{10}) перпендикулярна плоскости O_1B_1D . Остаётся из точки O_1 в треугольнике B_1O_1D провести высоту O_1K . Она и будет высотой тетраэдра.

- 2) Из вершины T_{10} на грань O_1B_1D отрезок $T_{10}Q$.
- 3) Из вершины B_1 на грань $O_1T_{10}D$ отрезок B_1M , где точка M ортоцентр треугольника BEK (puc. 27).

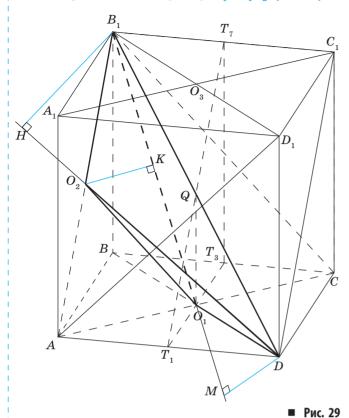
Эта грань лежит в плоскости $BT_{10}D$. Найдём пересечение этой плоскости с плоскостью $A_1B_1C_1D_1$. Для этого продлим прямую BT_{10} до пересечения с прямой B_1C_1 в точке K. Поскольку плоскости $A_1B_1C_1D_1$ и ABCD параллельны, плоскость $BT_{10}D$ пересекает плоскость $A_1B_1C_1D_1$ по прямой, которая проходит через точку K параллельно прямой BD. Пусть эта прямая пересекает A_1B_1 в точке E. Грань $O_1T_{10}D$ лежит в плоскости BEK. Тетраэдр B_1BEK прямоугольный с вершиной B_1 . Из этой точки опускаем перпендикуляр, основанием которого будет ортоцентр M треугольника BEK.

4) Из вершины D на грань $O_1T_{10}B_1$ — отрезок DN, где точка N — ортоцентр треугольника LFH (puc. 28).

Продлим B_1O_1 до пересечения с прямой D_1D в точке L. Соединим точки L и T_{10} . Прямая LT_{10} пересекает ребро DC в точке F. Пусть FO_1 пересекает прямую DA в точке H. По построению грань $B_1T_{10}O_1$ принадлежит плоскости LFH. Имеем прямоугольный тетраэдр DLFH с вершиной в точке D. Из этой точки проводим высоту, основание которой — ортоцентр треугольника LFH.



23. Кубический тетраэдр $B_1DO_1O_2$ (рис. 29)



Высоты:

1) Из вершины O_2 на грань O_1B_1D — отрезок O_2K . Эта грань лежит в плоскости B_1D_1DB .

Поскольку прямая A_1O_3 перпендикулярна этой плоскости, перпендикуляр O_2K , опущенный на грань O_1B_1D , будет параллелен отрезку A_1O_3 и будет вдвое меньше.

2) Из вершины B_1 на грань O_2O_1D — отрезок B_1H . Докажем, что грани O_2O_1D и O_2B_1D взаимно перпендикулярны. Действительно, грань O_2B_1D лежит в сечении AB_1C_1D , а грань O_2O_1D — в плоскости A_1BD . Поскольку $AC_1\perp BD$ и $AC_1\perp A_1B$, диагональ куба AC_1 перпендикулярна сечению A_1BD . Но диагональ AC_1 лежит в плоскости AB_1C_1D , значит, эта плоскость перпендикулярна плоскости A_1BD и, таким образом,

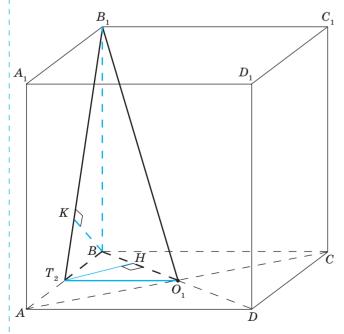
$$(O_2O_1D)\perp(O_2B_1D).$$

Остаётся из точки $B_{\scriptscriptstyle 1}$ провести высоту $B_{\scriptscriptstyle 1}H$ в треугольнике $B_{\scriptscriptstyle 1}O_{\scriptscriptstyle 2}D$

$$(\angle B_1 O_2 D > 90^\circ).$$

- 3) Из вершины O_1 на грань B_1O_2D отрезок O_1N . Плоскость QO_1T_1 перпендикулярна плоскости AB_1C_1D , которой принадлежит грань B_1O_2D . Искомая высота отрезок $O_1N \perp QT_1$.
- 4) Из вершины D на грань $O_2O_1B_1$ отрезок DM. Поскольку эта грань лежит в сечении AB_1C , а точка D равноудалена от точек A и C, основание перпендикуляра, опущенного из точки D, принадлежит прямой B_1O_1 .

24. Кубический тетраэдр $B_1BT_2O_1$ (рис. 30)



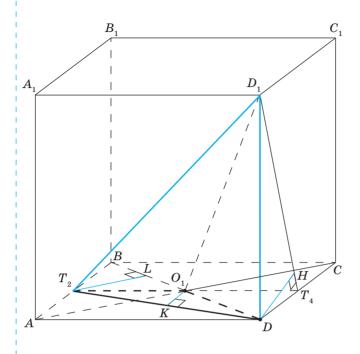
Высоты:

- 1) Из вершины B_1 на грань BT_2O_1 отрезок B_1B .
- 2) Из вершины T_2 на грань B_1BO_1 высота T_2H прямоугольного треугольника T_2BO_1

$$(\angle BT_2O_1 = 90^\circ).$$

- 3) Из вершины O_1 на грань T_2B_1B отрезок O_1T_2 .
- 4) Из вершины B на грань $B_1T_2O_1$ высота BK треугольника B_1BT_2 .

25. Кубический тетраэдр $T_2DD_1O_1$ (рис. 31)

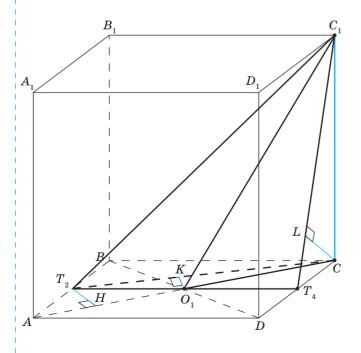


Высоты:

- 1) Из вершины $D_{\scriptscriptstyle 1}$ на грань $O_{\scriptscriptstyle 1}T_{\scriptscriptstyle 2}D$ отрезок $D_{\scriptscriptstyle 1}D_{\scriptscriptstyle 2}$
- 2) Из вершины O_1 на грань D_1DT_2 высота O_1K треугольника T_2O_1D .
- 3) Из вершины T_2 на грань DO_1D_1 высота T_2L треугольника T_2O_1D .
- 4) Из вершины D на грань $T_2O_1D_1$ высота DH треугольника DD_1T_4 (отрезок T_2T_4 перпендикулярен плоскости треугольника DD_1T_4).

■ Рис. 31

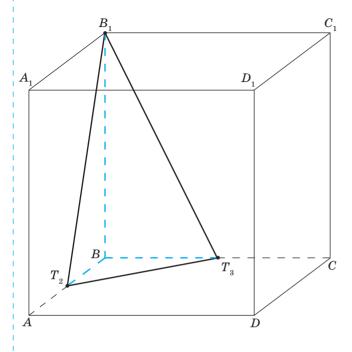
26. Кубический тетраэдр $T_2O_1C_1C$ (рис. 32)



Высоты:

- 1) Из вершины C_1 на грань O_1T_2C отрезок C_1C .
- 2) Из вершины O_1 на грань CC_1T_2 высота O_1K треугольника T_2O_1C .
- 3) Из вершины T_2 на грань O_1C_1C высота T_2H треугольника AT_2C .
- 4) Из вершины C на грань $O_1T_2C_1$ отрезок CL. Эта грань лежит в плоскости $T_2C_1T_4$, поэтому высота CL треугольника C_1T_4C будет высотой тетраэдра.

27. Кубический тетраэдр $B_1T_2T_3B$ (рис. 33)

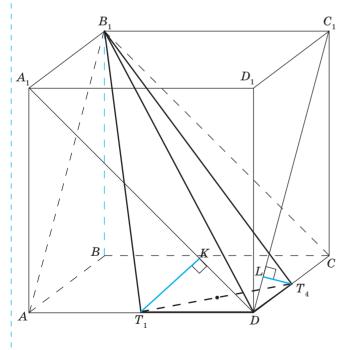


Высоты:

- 1) Из вершины B_1 на грань T_2T_3B отрезок B_1B .
- 2) Из вершины T_3 на грань BB_1T_2 отрезок T_2B .
- 3) Из вершины T_2 на грань BB_1T_3 отрезок T_2B .
- 4) Из вершины B на грань $B_1T_2T_3$ отрезок BM, где точка M ортоцентр треугольника $B_1T_2T_3$. Тетраэдр $BB_1T_2T_3$ прямоугольный, поэтому высота, опущенная из вершины B, проходит через ортоцентр треугольника $B_1T_2T_3$.

■ Рис. 33

28. Кубический тетраэдр $B_1T_1DT_4$ (рис. 34)



Высоты:

- 1) Из вершины B_1 на грань T_1DT_4 отрезок B_1B .
- 2) Из вершины T_1 на грань B_1DT_4 отрезок T_1K . Поскольку эта грань лежит в сечении DA_1B_1C , перпендикуляр T_1K , опущенный на A_1D ($K \in A_1D$), будет перпендикуляром к плоскости DA_1B_1C , а значит, высотой тетраэдра.
- 3) Из вершины T_4 на грань DT_1B_1 отрезок T_4L , перпендикулярный отрезку DC_1 (построение аналогично п. 2).
- 4) Из точки D на грань $B_1T_1T_4$ отрезок DN, где точка N лежит на оси симметрии l треугольника $B_1T_1T_4$. Поскольку $DT_1=DT_4$, отрезок DN, перпендикулярный l, будет высотой тетраэдра.

30. Кубический тетраэдр $A_1B_1T_1T_4$ (рис. 36)

Высоты:

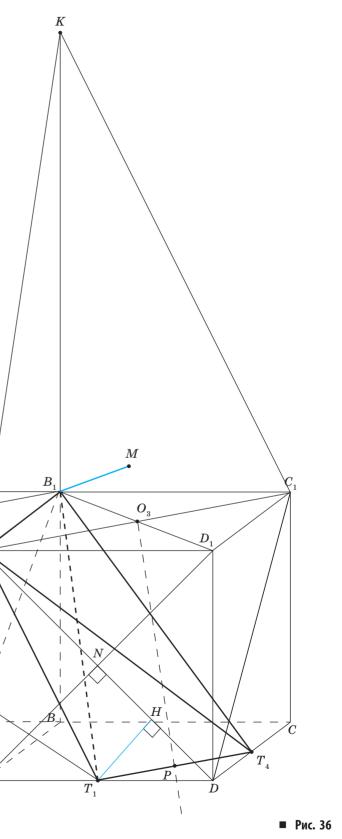
1) Из вершины $T_{\scriptscriptstyle 1}$ на грань $A_{\scriptscriptstyle 1}B_{\scriptscriptstyle 1}T_{\scriptscriptstyle 4}$ — отрезок $T_{\scriptscriptstyle 1}H$.

Первый способ. Грань $A_1B_1T_4$ лежит в плоскости A_1B_1CD . В треугольнике A_1T_1D проведём высоту T_1H . Имеем $T_1H \perp A_1D$ и $T_1H \perp DC$, следовательно, отрезок T_1H перпендикулярен плоскости A_1DC , а значит, и плоскости $A_1B_1T_4$.

Второй способ. Грань $A_1B_1T_4$ лежит в плоскости A_1B_1CD . Из точки T_1 опустим перпендикуляр на эту плоскость. Поскольку плоскость A_1ADD_1 перпендикулярна плоскости A_1B_1CD , основание H этого перпендикуляра будет лежать на общей прямой A_1D этих плоскостей.

2) Из вершины $B_{\!\scriptscriptstyle 1}$ на грань $A_{\!\scriptscriptstyle 1}T_{\!\scriptscriptstyle 1}T_{\!\scriptscriptstyle 4}$ — отрезок $B_{\!\scriptscriptstyle 1}M$.

Первый способ. Грань $A_1T_1T_4$ лежит в плоскости $A_1C_1T_4T_1$. Пусть прямая BB_1 пересекает эту плоскость в точке K. Получим прямоугольный тетраэдр $A_1B_1C_1K$. Из точки B_1 на основание тетраэдра A_1C_1K опускаем перпендикуляр — он попадёт в ортоцентр M треугольника A_1C_1K .



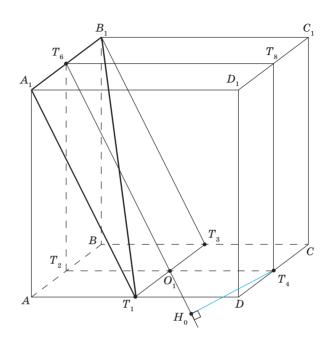
Второй способ. Грань $A_1T_1T_4$ лежит в плоскости $A_1C_1T_4T_1$. Пусть точка P — середина отрезка T_1T_4 . Основание перпендикуляра, опущенного из точки B_1 на плоскость $A_1T_1T_4$, попадёт на прямую PO_3 — ось симметрии отрезка T_1T_4 .

3) Из вершины A_1 на грань $B_1T_1T_4$ — отрезок A_1F . «Удвоим» куб $B_1BAA_1C_3C_2D_2D_3$. Поскольку $T_1T_4\parallel AC$, то $T_1T_4\parallel D_3B_1$. Плоскость $T_1D_3B_1T_4$ содержит грань $B_1T_1T_4$. На неё из точки A_1 надо опустить перпендикуляр. Для этого образуем прямоугольный тетраэдр $A_1B_1ED_3$, где точку E получим, отложив отрезок $\frac{1}{3}a$ на ребре AA_1 от точки A. Остаётся из точки A_1 опустить перпендикуляр на плоскость треугольника D_3EB_1 . Он попадёт в его ортоцентр.

4) Из вершины T_4 на грань $A_1B_1T_1$ — отрезок T_4H_0 (puc. 37).

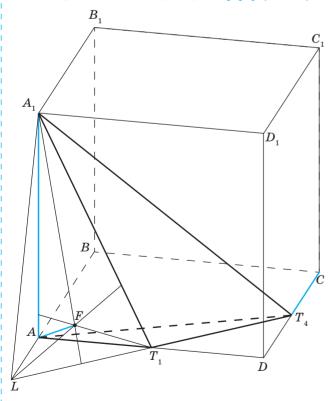
Грань $A_1B_1T_1$ лежит в сечении $A_1B_1T_3T_1$. Построим сечение $T_2T_6T_8T_4$. Оно перпендикулярен о $A_1B_1T_3T_1$ (отрезок T_1T_3 перпендикулярен плоскости $T_2T_6T_8T_4$). Значит, высота, опущенная из

точки T_4 на плоскость $A_1B_1T_3T_1$, — перпендикуляр, проведённый из точки T_4 к прямой T_6O_1 .



■ Рис. 37

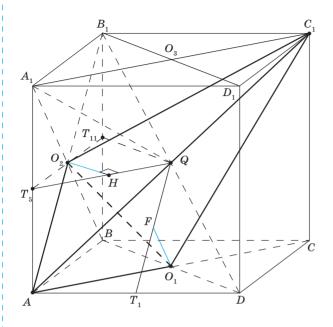
29. Кубический тетраэдр $AA_{1}T_{1}T_{4}$ (рис. 35)



Высоты:

- 1) Из вершины A_1 на грань AT_1T_4 отрезок A_1A .
- 2) Из вершины T_1 на грань AA_1T_4 отрезок T_1K , являющийся высотой треугольника AT_1T_4 .
- 3) Из вершины T_4 на грань AA_1T_1 отрезок T_4D .
- 4) Из вершины A на грань $A_1T_1T_4$ отрезок AF. Построим L точку пересечения прямых T_1T_4 и AB. Тетраэдр AA_1LT_1 прямоугольный. Точка F ортоцентр треугольника A_1LT_1 .

31. Кубический тетраэдр $AO_1O_2C_1$ (рис. 38)



■ Рис. 38

Высоты:

1) Из вершины O_2 на грань AC_1O_1 — отрезок O_2H . Грань AC_1O_1 принадлежит плоскости AA_1C_1C . Отрезок $T_{11}Q$ параллелен отрезку BD,

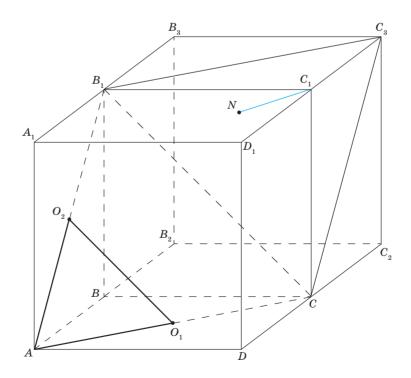
который перпендикулярен плоскости AA_1C_1C , а значит, и грани AC_1O_1 . Плоскость $T_{11}T_5Q$ перпендикулярна этой грани, а значит, отрезок O_2H , проведённый параллельно $T_{11}Q$ ($T_5H=HQ$), будет искомой высотой тетраэдра.

2) Из вершины C_1 на грань AO_1O_2 — отрезок C_1N . «Удвоим» куб $ABCDA_1B_1C_1D_1$:

$$B_1B_3 = A_1B_1$$
, $C_1C_3 = D_1C_1$, $B_2B_3 = AA_1$

(рис. 39). Грань AO_1O_2 принадлежит плоскости AB_1C_3C . Точка C_1 — вершина прямоугольного тетраэдра $C_1CC_3B_1$. Основанием перпендикуляра, опущенного из точки C_1 на плоскость AB_1C_3C , будет ортоцентр N равностороннего треугольника CB_1C_3 .

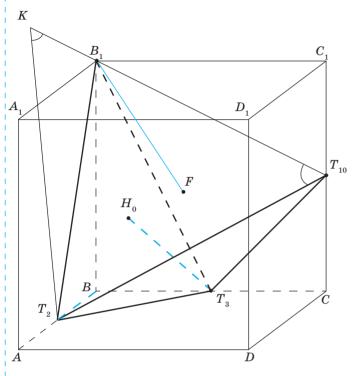
- 3) Из вершины O_1 на грань AO_2C_1 отрезок O_1F . Построение высоты аналогично построению высоты из п. 1. Основание F этой высоты является серединой отрезка QT_1 .
- 4) Из вершины A на грань $C_1O_1O_2$ отрезок AK. Ребро AC_1 составляет равные углы с рёбрами C_1O_1 и C_1O_2 , значит, оно проектируется на биссектрису l угла O_1CO_2 . Искомая высота перпендикуляр AK (на рисунке не изображён).



■ Рис. 39

IV. Одна вершина куба и три середины

32. Кубический тетраэдр $B_1T_2T_3T_{10}$ (рис. 40)



перпендикуляр, опущенный из точки T_3 на плоскость $B_1T_2T_{10}$, попадёт в центр H_0 окружности, описанной около треугольника $T_2T_{10}K$.

4) Из вершины T_{10} на грань $B_1T_2T_3$ — отрезок $T_{10}L$.

«Удвоим» куб $ABCDA_1B_1C_1D_1$ (puc. 41).

Продлим T_2T_3 до пересечения с прямой DC в точке T_4 '. Соединим точки B_1 и C_1 '. Грань $B_1T_3T_2$ принадлежит плоскости $B_1T_2T_4$ ' C_1 '. Основание L перпендикуляра, опущенного из точки T_{10} на эту плоскость, лежит на оси симметрии O_3 'P равнобедренной трапеции $T_3B_1C_1$ ' T_4 ', где точка P — середина отрезка T_3T_4 '.

■ Рис. 40

Высоты:

1) Из вершины T_2 на грань $B_1T_3T_{10}$ — отрезок T_2B . Эта грань лежит в плоскости BB_1C_1C , а отрезок T_2B ей перпендикулярен, поэтому он и будет высотой.

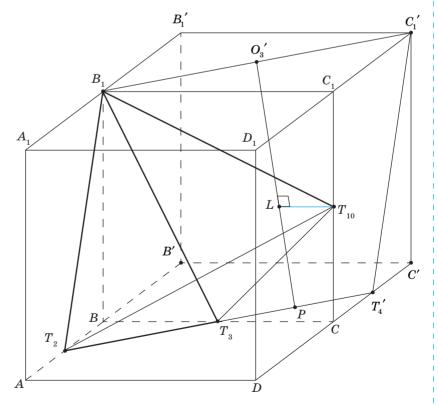
2) Из точки B_1 на грань $T_2T_3T_{10}$ — отрезок B_1F . Поскольку

$$B_1 T_2 = B_1 T_{10} = B_1 T_3,$$

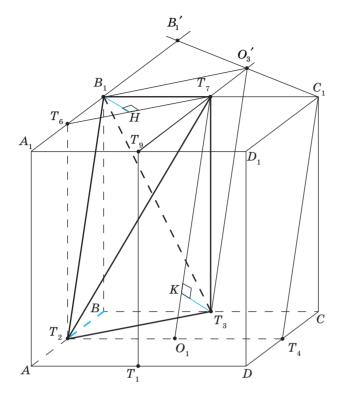
перпендикуляр, опущенный из вершины B_1 , попадает в центр окружности, описанной около треугольника $T_2T_3T_{10}$.

3) Из вершины T_3 на грань $B_1T_2T_{10}$ — отрезок T_3H_0 . Найдём на прямой B_1T_{10} такую точку K, чтобы угол $T_3T_{10}B_1$ был равен углу T_3KT_{10} . Поскольку

$$T_3T_{10}=T_3K=T_3T_2$$
,



33. Кубический тетраэдр $B_1T_2T_3T_7$ (рис. 42)



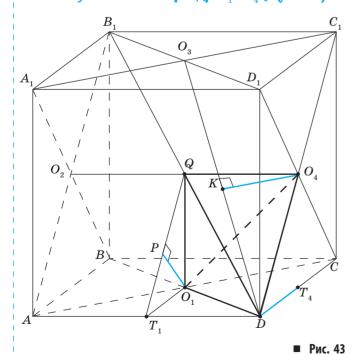
Высоты:

- 1) Из вершины T_2 на грань $B_1T_3T_7$ отрезок $T_{\mathfrak{o}}B$.
- 2) Из вершины B_1 на грань $T_2T_3T_7$ отрезок B_1H . Поскольку плоскость $B_1T_6T_7$ перпендикулярна плоскости $T_2T_3T_7T_6$, то основанием перпендикуляра, опущенного из точки В., является середина H отрезка T_6T_7 .
- 3) Из вершины T_3 на грань $B_1T_2T_7$ отрезок T_3K . Эта грань лежит в плоскости $B_1T_2T_4C_1$, которая перпендикулярна плоскости $T_1T_3T_7T_9$. Поэтому основание K искомого перпендикуляра лежит в пересечении этих плоскостей — на прямой O_1T_7 .
- 4) Из вершины T_7 на грань $B_1T_2T_3$ отрезок T_7L . Продлим ребро A_1B_1 на свою длину за точку B_1 . Получим точку B_1' . Соединим её с точкой C_1 . Пусть точка O_3 — середина полученного отрезка. Тогда основанием искомой высоты будет ортоцентр Lтреугольника $B_{1}T_{3}O_{3}'$. Действительно, поскольку грань $B_{1}T_{2}T_{3}$ лежит в плоскости $B_1O_3{'}T_3T_2$ и

$$\angle B_1 T_7 {O_3}' = \angle {O_3}' T_7 T_3 = \angle T_3 T_7 B_1 = 90^{\circ},$$

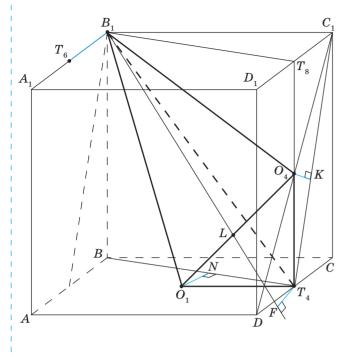
тетраэдр $B_1T_3O_3'T_7$ прямоугольный с вершиной T_7 . ■ Рис. 42

34. Кубический тетраэдр O_1DO_4Q (рис. 43)



- 1) Из вершины D на грань QO_4O_1 отрезок DT_{4} .
- 2) Из вершины O_1 на грань QO_4D отрезок O_1P . Действительно, грань QO_4D лежит в плоскости AB_1C_1D , а отрезок O_1P , перпендикулярный QT_1 , перпендикулярен этой плоскости.
- 3) Из вершины O_4 на грань QO_1D отрезок O_4K . Эта грань лежит в плоскости BB_1D_1D . Поскольку отрезок C_1O_3 перпендикулярен этой плоскости, плоскости DO_3C_1 и DBB_1D_1 перпендикулярны. Точка O_4 принадлежит плоскости DO_3C_1 , и перпендикуляр O_4K ($K\in DO_3$) будет высотой тетраэдра ($O_4K = \frac{1}{2}O_3C_1$).
- 4) Из вершины Q на грань O_1O_4D отрезок QN. Эта грань лежит в сечении BDC_1 . Точка Q равноудалена от точек B, C_1 и D, значит, основанием искомой высоты будет центр равностороннего треугольника BDC_1 .

35. Кубический тетраэдр $B_1O_1O_4T_4$ (рис. 44)



Высоты:

- 1) Из вершины $B_{\scriptscriptstyle 1}$ на грань $O_{\scriptscriptstyle 1}O_{\scriptscriptstyle 4}T_{\scriptscriptstyle 4}$ отрезок $B_{\scriptscriptstyle 1}T_{\scriptscriptstyle 6}$.
- 2) Из вершины O_4 на грань $B_1O_1T_4$ отрезок O_4K . Эта грань лежит в плоскости $T_2B_1C_1T_4$, перпендикулярной плоскости DD_1C_1C . Значит, перпендикуляр, опущенный из точки O_4 на плоскость $T_2B_1C_1T_4$, лежит в плоскости DD_1C_1C ($O_4K\perp C_1T_4$).
- 3) Из вершины T_4 на грань $B_1O_1O_4$ отрезок T_4F . Поскольку

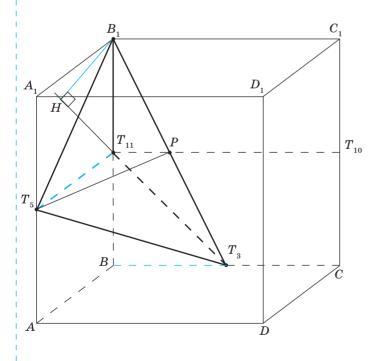
$$O_1T_4 = O_4T_4$$
, $O_1L = LO_4$,

основание перпендикуляра, опущенного из точки T_4 , принадлежит оси симметрии отрезка O_1O_4 в плоскости $B_1O_4O_1$.

4) Из вершины O_1 на грань $B_1T_4O_4$ — отрезок O_1N . Эта грань лежит в плоскости $B_1T_8T_4B$.

■ Рис. 44

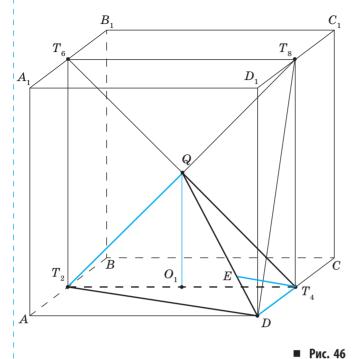
36. Кубический тетраэдр $B_1T_{11}T_3T_5$ (рис. 45)



Высоты:

- 1) Из вершины T_3 на грань $B_1T_{11}T_5$ отрезок T_3B .
- 2) Из вершины T_{5} на грань $B_{1}T_{11}T_{3}$ отрезок $T_{5}T_{11}$.
- 3) Из вершины B_1 на грань $T_{11}T_3T_5$ отрезок B_1H . Поскольку плоскости $T_5T_3T_{11}$ и B_1BCC_1 взаимно перпендикулярны, искомой высотой будет перпендикуляр, опущенный из точки B_1 на их общую прямую T_3T_{11} .
- 4) Из вершины T_{11} на грань $B_1T_3T_5$ отрезок $T_{11}M$. Проведём через точку T_{11} прямую, параллельную ребру куба BC. Она пересечёт прямую B_1T_3 в точке P. Плоскость B_1T_5P лежит в грани $B_1T_3T_5$, а $T_{11}B_1PT_5$ прямоугольный тетраэдр с вершиной T_{11} . Значит, искомой высотой будет отрезок $T_{11}M$, содержащий ортоцентр треугольника B_1T_5P .

37. Кубический тетраэдр $DQT_{4}T_{2}$ (рис. 46)

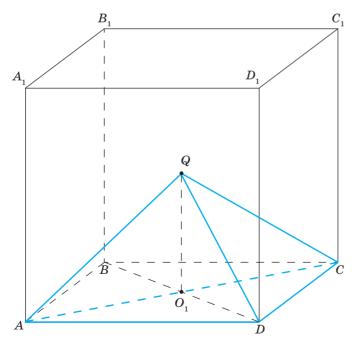


Высоты:

- 1) Из вершины Q на грань DT_2T_4 отревок QQ..
- 2) Из вершины D на грань QT_2T_4 отрезок DT_4 .
- 3) Из вершины T_2 на грань QDT_4 отрезок T_2Q . Построим сечение $T_2T_6T_8T_4$. Отрезки T_2Q и T_4Q перпендикулярны. Также перпендикулярны отрезки T_2Q и T_4D , значит, отрезок T_2Q перпендикулярен грани DQT_4 .
- 4) Из вершины T_4 на грань QDT_2 отрезок T_4E , где точка E ортоцентр треугольника T_2T_8D . Рассмотрим прямоугольный тетраэдр $T_4T_8DT_2$. Грань QDT_2 принадлежит основанию T_2T_8D этого тетраэдра. Значит, основанием искомой высоты будет ортоцентр треугольника T_2T_8D ($E\in DQ$).

РЕШЕНИЕ КУБИЧЕСКОГО ТЕТРАЭДРА

Рассмотрим тетраэдр *QACD* (рис. 47)



1. Рёбра

$$AD = CD = a,$$

$$AQ = \frac{1}{2}AC_1 = \frac{a\sqrt{3}}{2};$$

$$CQ = DQ = AQ = \frac{a\sqrt{3}}{2},$$

$$AC = a\sqrt{2}.$$

2. Плоские углы

а) При вершине A:

$$\angle CAD = 45^{\circ}$$

(поскольку ABCD — квадрат),

$$\angle QAC = \angle C_1AC = \arccos\frac{AC}{AC_1} = \arccos\sqrt{\frac{2}{3}},$$

$$\angle QAD = \angle C_1AD = \arccos\frac{AD}{AC_1} = \arccos\frac{1}{\sqrt{3}};$$

б) при вершине D:

 $\angle ADC = 90^{\circ}$,

$$\angle ADQ = \angle CDQ = \arccos \frac{1}{\sqrt{3}},$$

$$AQ^2 = AD^2 + QD^2 - 2AD \cdot QD \cdot \cos \angle ADQ$$

(из ΔAQD), следовательно,

$$\cos \angle ADQ = \frac{1}{\sqrt{3}},$$

если учесть, что треугольник ADQ равнобедренный и $\angle ADQ = \angle QAD$;

в) при вершине Q:

$$\angle AQD = \angle CQD = \arccos \frac{1}{3}$$

так как

$$\cos \angle AQD = \frac{AQ^{2} + QD^{2} - AD^{2}}{2 \cdot AQ \cdot QD} =$$

$$= \frac{\frac{3a^{2}}{4} + \frac{3a^{2}}{4} - a^{2}}{2 \cdot \frac{3a^{2}}{4}} = \frac{1}{3},$$

$$\angle AQC = \pi - \arccos \frac{1}{2},$$

так как

$$egin{aligned} \cos ngle AQC &= rac{AQ^2 + QC^2 - AC^2}{2 \cdot AQ \cdot QC} = \ &= rac{3a^2}{4} + rac{3a^2}{4} - 2a^2 \ &= -rac{1}{3}; \end{aligned}$$

 Γ) при вершине C:

$$\angle ACD = 45^{\circ}$$

$$\angle QCA = \angle A_1CA = \arccos \frac{AC}{A_1C} = \arccos \sqrt{\frac{2}{3}},$$

$$\angle QCD = \angle A_1CD = \arccos \frac{CD}{A_1C} = \arccos \frac{1}{\sqrt{3}}.$$

3. Углы между скрещивающимися рёбрами

а) Между QD и AC (угол ϕ_1): так как BD — проекция QD на плоскость ABC и отрезки BD и AC перпендикулярны, по теореме о трёх перпендикулярах $QD \perp AC$, а значит,

$$\phi_1 = 90^{\circ};$$

б) между QC и AD (угол ϕ_2): так как $AD \parallel BC$, получаем

$$\varphi_2 = \angle QCB = \angle QCD = \arccos \frac{1}{\sqrt{3}};$$

в) между QA и DC (угол ϕ_3): аналогично предыдущему

$$\varphi_3 = \arccos \frac{1}{\sqrt{3}}$$
.

4. Расстояние между скрещивающимися рёбрами кубического тетраэдра

Воспользуемся формулой

$$V = \frac{1}{6}a_1 a_2 d \sin \varphi,$$

где a_1 , a_2 — данные скрещивающиеся рёбра, ϕ — угол между ними, d — расстояние между ними, V — объём тетраэдра. Получаем, что

$$V = \frac{a^3}{12}$$

(докажите);

$$\sin\phi_1=1,$$

$$\sin\phi_2=\sin\phi_3=\sqrt{1-\left(\frac{1}{\sqrt{3}}\right)^2}=\sqrt{\frac{2}{3}},$$

следовательно,

a)
$$d(AQ,DC) = \frac{6V}{AQ \cdot DC \cdot \sin \varphi_3} =$$

$$= \frac{\frac{a^3}{2}}{\frac{a\sqrt{3}}{2} \cdot a\sqrt{\frac{2}{3}}} = \frac{a}{\sqrt{2}};$$
6) $d(QD,AC) = \frac{6V}{QD \cdot AC \cdot \sin \varphi_1} =$

$$=\frac{\frac{a^3}{2}}{\frac{a\sqrt{3}}{2}\cdot a\sqrt{2}}=\frac{a}{\sqrt{6}};$$

B)
$$d(QC,AD) = \frac{6V}{QC \cdot AD \cdot \sin \varphi_2} = \frac{\frac{a^3}{2}}{\frac{a\sqrt{3}}{2} \cdot a\sqrt{\frac{2}{2}}} = \frac{a}{\sqrt{2}}.$$

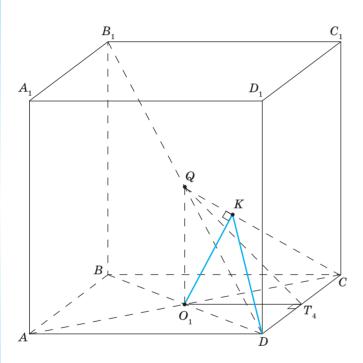
5. Двугранные углы при рёбрах тетраэдра (ψ_i)

а) При ребре AC (угол ψ_1): так как отрезок QO_1 перпендикулярен плоскости ACD, плоскости AQC и ADC перпендикулярны, т. е. $\psi_1 = 90^\circ$;

б) при ребре CD (угол ψ_2): поскольку $QT_4 \perp CD$ и $O_1T_4 \perp CD$, получаем, что

$$\begin{split} \psi_2 = \angle Q T_4 O_1 &= \arccos \frac{O_1 T_4}{Q T_4} = \\ &= \arccos \frac{\frac{a}{2}}{\frac{a}{\sqrt{2}}} = 45^\circ; \end{split}$$

- в) при ребре AD (угол ψ_3): аналогично предыдущему $\psi_3 = 45^\circ;$
- г) при ребре CQ (угол ψ_4): опустим из точки O_1 перпендикуляр O_1K на CQ (puc.~48),



■ Рис. 48

тогда

$$\psi_4 = \angle O_1 KD = \operatorname{arctg} \frac{O_1 D}{O_1 K},$$

$$O_1 D = \frac{a\sqrt{2}}{2};$$

отрезок O_1K найдём из треугольника QO_1C :

$$\frac{1}{2}O_1K \cdot QC = \frac{1}{2}QO_1 \cdot O_1C;$$

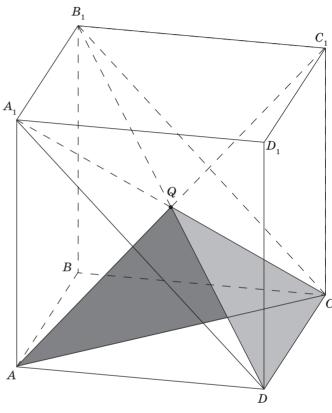
$$O_1K \cdot \frac{a\sqrt{3}}{2} = \frac{a}{2} \cdot \frac{a\sqrt{2}}{2};$$

$$O_1K = \frac{a}{\sqrt{6}};$$

тогда

$$\psi_4 = \operatorname{arctg} \frac{a}{\sqrt{2}} \cdot \frac{\sqrt{6}}{a} = \operatorname{arctg} \sqrt{3} = 60^{\circ}$$

(заметим, что $\psi_4 = 60^\circ$ — это двугранный угол между сечениями AA_1C_1C и A_1B_1CD (рис. 49), т. е. два диагональных сечения куба, которые пересекаются по диагонали куба, составляют 60°);



■ Рис. 49

д) при ребре AQ (угол ψ_5):

$$\psi_5 = \operatorname{arctg} \sqrt{3} = 60^{\circ}$$

(аналогично вычислению угла ψ_{4});

е) при ребре DQ (угол ψ_6): это угол между плоскостями ADQ и CDQ, т. е. между сечениями AB_1C_1D и A_1B_1DC , а как было установлено выше, угол между такими сечениями равен 60° , т. е. $\psi_6=60^\circ$.

6. Площадь полной поверхности

$$S = \frac{a^2}{4} \left(2 + 3\sqrt{2} \right)$$

(проверьте самостоятельно).