Task
Time limit:
1000 ms,
Memory limit:
32 Mb
Постулат Бертрана (теорема Бертрана-Чебышева, теорема Чебышева) гласит, что для любого n > 1 найдется простое число p в интервале n < p < 2n. Такая гипотеза была выдвинута в 1845 году французским математиком Джозефем Бертраном (проверившим ее до n=3000000) и доказана в 1850 году Пафнутием Чебышевым. Раманужан в 1920 году нашел более простое доказательство, а Эрдеш в 1932 – еще более простое.
Ваша задача состоит в том, чтобы решить несколько более общую задачу – а именно по числу n найти количество простых чисел p из интервала n < p < 2n.
Напомним, что число называется простым, если оно делится только само на себя и на единицу
Входные данные
целое число n (2 ≤ n ≤ 50000).
Выходные данные
выведите одно число – ответ на задачу.