Задача: Черно-белые палиндромы
Дана полоса клетчатой бумаги длиной N клеток и шириной 1 клетка, в которой некоторые клетки покрашены в черный цвет, а остальные — в белый. Такая полоса называется палиндромом, если последовательность черных и белых клеток при просмотре этой полосы слева направо оказывается такой же, как при просмотре справа налево.
Вам дана полоса длины N. Требуется разрезать ее на полоски, являющиеся палиндромами, так, чтобы количество получившихся полосок было строго меньше величины (2/5)N + 3.
Входные данные
Первая строка входного файла содержит число N — длину исходной полосы (N — натуральное число, не превышающее 100000). Далее идет N чисел, описывающих раскраску полосы: 0 означает черную клетку, а 1 — белую.
Выходные данные
В выходной файл выведите в возрастающем порядке номера клеток исходной полосы, после которых нужно сделать разрезы.
Примеры
№ |
Входные данные |
Выходные данные |
Пояснение |
1 |
6
0 1 0 1 1 0 |
3 5 |
Из исходной полосы мы получим 3 полосы-палиндрома, сделав разрезы после 3-й клетки (то есть между 3-й и 4-й) и после 5-й (то есть между 5-й и 6-й) |
2 |
6
0 1 1 0 0 0 |
1 3 |
Данную полосу можно разрезать на 2 полосы-палиндрома, однако по условию не требуется искать решение с минимальным числом получившихся полосок — достаточно, чтобы число полосок удовлетворяло указанному в условии ограничению. |
3 |
5
0 0 0 0 0 |
|
Исходная строка уже является палиндромом, поэтому можно ничего не разрезать |
Ваш ответ: