Описание

Ограничение по времени: 1000 ms
Ограничение по памяти: 256 Mb

Ответы на вопросы

Задача: Не подпоследовательность

Последовательность \(X = [x_1, x_2, \ldots, x_t]\) является подпоследовательностью последовательности \(Y = [y_1, y_2, \ldots, y_s]\), если можно удалить некоторые (возможно ни одного) элементы \(Y\), чтобы получить \(X\). Иначе говоря, существует последовательность индексов \(1 \le i_1 < i_2 < \ldots < i_t \le s\), что \(x_j = y_{i_j}\) для всех \(j\) от \(1\) до \(s\). Например, последовательность \([1, 2, 3, 2]\) является подпоследовательностью последовательности \([\mathbf{1}, 1, \mathbf{2}, 2, 1, \mathbf{3}, \mathbf{2}, 1]\), а последовательность \([1, 2, 3, 1, 2]\) "— нет.

Рассмотрим две последовательности \(A = [a_1, a_2, \ldots, a_m]\) и \(B = [b_1, b_2, \ldots, b_n]\), состоящие из целых чисел от \(1\) до \(k\).

Требуется найти минимальную по длине последовательность \(C = [c_1, c_2, \ldots, c_p]\), которая не являлась бы подпоследовательностью ни \(A\) ни \(B\). Элементы последовательности \(C\) также должны являться целыми числами от \(1\) до \(k\).

Формат входных данных
Первая строка ввода содержит число \(k\) — максимальное значение элемента последовательности (\(1 \le k \le 5\,000\)).

Вторая строка содержит число \(m\) — длину последовательности \(A\) (\(1 \le m \le 5\,000\)). Третья строка содержит \(m\) целых чисел от \(1\) до \(k\) — последовательность \(A\).

Четвертая строка содержит число \(n\) — длину последовательности \(B\) (\(1 \le n \le 5\,000\)). Пятая строка содержит \(n\) целых чисел от \(1\) до \(k\) — последовательность \(B\).

Формат выходных данных
На первой строке выведите \(p\) — длину искомой последовательности. На второй строке выведите последовательность \(C\). Если оптимальных ответов несколько, выведите любой из них.

 


Прикрепите файл с исходным кодом программы:
     
или введите исходный код на языке:


Правила оформления программ и список ошибок при автоматической проверке задач
           

Ваш ответ:

Загруженные файлы:


Нет

Примечание учителя: