import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import numpy as np
# Загрузка датасета
data = pd.read_csv("dataset-of-10s.csv")
# Шаг 1: Выбери признаки для модели
features = ['danceability', 'energy', 'loudness', 'speechiness',
'acousticness', 'instrumentalness', 'liveness',
'valence', 'tempo', 'duration_ms']
|
|
|
# Шаг 2: Раздели на train и test
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
new_track = pd.DataFrame([[
0.8, # danceability
0.7, # energy
-5, # loudness
0.05, # speechiness
0.1, # acousticness
0.3, # instrumentalness
0.2, # liveness
0.9, # valence
128, # tempo
210000 # duration_ms
]], columns=features)
|
|
|
if prediction[0] == 1:
print("ЭТО БУДЕТ ХИТ! ")
print("Готовь Grammy! ")
else:
print("К сожалению, хитом не станет...")
|