Если в графе есть циклы отрицательного веса, то формально алгоритм Флойда-Уоршелла неприменим к такому графу.
На самом же деле, для тех пар вершин i и j, между которыми нельзя зайти в цикл отрицательного вес, алгоритм отработает корректно.
Для тех же пар вершин, ответа для которых не существует (по причине наличия отрицательного цикла на пути между ними), алгоритм Флойда найдёт в качестве ответа какое-то число (возможно, сильно отрицательное, но не обязательно). Тем не менее, можно улучшить алгоритм Флойда, чтобы он аккуратно обрабатывал такие пары вершин и выводил для них, например, \(- \infty\).
Для этого можно сделать, например, следующий критерий "не существования пути". Итак, пусть на данном графе отработал обычный алгоритм Флойда. Тогда между вершинами i и j не существует кратчайшего пути тогда и только тогда, когда найдётся такая вершина t, достижимая из i и из которой достижима j, для которой выполняется \(d[t][t]<0\).
Кроме того, при использовании алгоритма Флойда для графов с отрицательными циклами следует помнить, что возникающие в процессе работы расстояния могут сильно уходить в минус, экспоненциально с каждой фазой. Поэтому следует принять меры против целочисленного переполнения, ограничив все расстояния снизу какой-нибудь величиной (например, \(- \infty\)).
Словесно решение можно описать таким образом:
После того, как алгоритм Флойда-Уоршелла отработает для входного графа, переберём все пары вершин \((i,j)\), и для каждой такой пары проверим, бесконечно мал кратчайший путь из i в j или нет. Для этого переберём третью вершину t, и если для неё оказалось \(d[t][t] < 0\) (т.е. она лежит в цикле отрицательного веса), а сама она достижима из i и из неё достижима j — то путь \((i,j)\) может иметь бесконечно малую длину.