Олимпиадный тренинг

Задача . Укладка плитки


Задача

Темы:
В процессе ремонта в Лаборатории Информационных Технологий строителям необходимо заменить поврежденные напольные плитки в коридоре лаборатории, который имеет размер 2 × n метров. В распоряжении строителей есть неограниченный запас плиток двух размеров: 1 × 2 метра и 1 × 1 метр. При этом плитки размером 1 × 2 метра перед укладкой разрешается поворачивать на 90 градусов и размещать как вдоль, так и поперек коридора.

Строители уже начали ремонт и уложили в некоторых местах пола коридора k плиток размером 1 × 1. Для завершения ремонта прорабу необходимо подготовить план дальнейших работ. Для этого ему надо решить, каким образом уложить плитки на места, где они еще не уложены. Это можно сделать различными способами и прораб хочет перебрать все варианты и выбрать самый удачный. Перед тем как это сделать, прораб хочет знать, какое количество вариантов ему придется рассмотреть. Это число требуется найти по модулю 109 + 7.

Требуется написать программу, которая по заданной длине коридора n и расположению плиток, которые уже уложены, определяет количество способов укладки плиток на оставшиеся места. Ответ необходимо вывести по модулю 109 + 7.

Формат входного файла
Первая строка входного файла содержит два целых числа: n — длину коридора и k — количество уже уложенных единичных плиток (1 ≤ n ≤ 100 000, 0 ≤ k < 2n). Последующие k строк содержат по два целых числа xi и yi , которые задают позиции уже уложенных единичных плиток, i-я плитка уложена на xi-м метре коридора в yi-м ряду (1 ≤ xi ≤ n, 1 ≤ yi ≤ 2).

Формат выходного файла
Выходной файл должен содержать одно целое число — количество способов укладки плиток в коридоре, взятое по модулю 109 + 7.
Ввод Вывод
2 0 7
3 0 22
3 1
2 1
8



time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
С++ Mingw-w641
Комментарий учителя