Олимпиадный тренинг

Задача 38343. Округлите равенство


Дано верное равенство вида a1+a2+…+aN=b1+b2+…bM, где a1,a2,…,aN, b1,b2,…,bM – некоторые действительные (не обязательно целые) числа. Требуется «округлить» это равенство, т.е. получить новое верное равенство c1+c2+…+cN=d1+d2+…+dM, где c1,c2,…,cN,d1,d2,…,dM — целые числа, и при этом c1 получено округлением числа a1 до целого вверх или вниз (так, например, число 1.7 разрешается округлить как до 1, так и до 2), c2 получено округлением a2, …, cN – округлением aN, d1 – округлением b1, …, dM – округлением bM. Если какое-то из чисел в исходном равенстве было целым, оно должно остаться без изменений.

Входные данные
Во входном файле задано сначала число N, затем N чисел a1, a2, …, aN, затем число M, затем числа b1, b2, …, bM. Каждое число задается на отдельной строке. M и N – натуральные числа, не превышающие 1000. Остальные числа — вещественные, каждое из них по модулю не превышает 1000 и содержит не более 6 цифр после десятичной точки. При этом a1+a2+…+aN=b1+b2+…bM.

Выходные данные
Если «округлить» равенство можно, то в выходной файл выведите сначала числа c1,c2,…,cN, а затем числа d1,d2,…,dM. Все числа должны быть целыми и выведены без десятичной точки. Числа должны разделяться пробелами или переводами строки. Если решений несколько, выведите любое из них.

Если округлить исходное равенство до верного целочисленного равенства невозможно, выведите одно число 0.
Примеры
Входные данные Выходные данные Пояснение
1 3
0.15
-3.000
2.7
1
-0.15
1
-3
2
0
Обратите внимание, что число –3 может округляться только в –3, в то время как 0.15 можно округлить как до 0, так и до 1, 2.7 – до 2 или до 3, –0.15 – до –1 или до 0. Приведенное решение не является единственным: так же верным является, например, такое округление: 1+(–3)+2=0
 
2 2
1.7
2.5
3
1
2.000
1.20
2
2
1
2
1
Приведенное решение 1+3=1+2+1 не является единственным. Верными ответами также являются 2+2=1+2+1 и 2+3=1+2+2.
 
3 1
0.5
1
0.5
0
0
Здесь верными являются как ответ 1=1, так и 0=0.