Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу два или три камня или увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 50. Если при этом в куче оказалось не более 100 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник, при этом считается, что он сделал свой ход.
В начальный момент в куче было S камней, 1 ≤ S ≤ 49.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Вопрос 1
При каком минимальном значении S у Вани есть выигрышная стратегия, при которой он побеждает своим первым ходом?
Вопрос 2
Сколько существует таких значений S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
− Петя не может выиграть за один ход;
− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
В ответе запишите одно число - количество таких значений S.
Вопрос 3
Найдите минимальное значение S, при котором одновременно выполняются два условия:
− у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
− у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Формат ввода ответов
На каждое задание ответы пишите с новой строки. Например, если ответ на первый вопрос 1, на второй 2, на третий 4, то ответы надо записать так:
1
2
4