Олимпиадный тренинг

Задача . 39011


Задача

Темы:

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) три камня или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 5 камней; такую позицию в игре будем обозначать (10, 5). Тогда за один ход можно получить любую из четырёх позиций: (13, 5), (20, 5), (10, 8), (10, 10). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда в одной из куч количество камней становится не менее 50. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в одной из куч стало 50 или больше камней.

В начальный момент в первой куче было 23 камня, во второй куче – S камней; 1 ≤ S ≤ 26.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
 

Вопрос 1

Найдите минимальное значение S, при котором у Вани есть выигрышная стратегия, при которой он побеждает своим первым ходом.

 
Вопрос 2

Найдите минимальное и максимальное значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

 
Вопрос 3

Найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

 
Формат ввода ответов 

На каждое задание ответы пишите с новой строки. Например, если ответ на первый вопрос 1, на второй 2 и 3, на третий 4, то ответы надо записать так:

1
2 3
4


time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя