Олимпиадный тренинг

Задача . 39013


Задача

Темы:

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат три кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, во второй и третьей 5 камней; такую позицию в игре будем обозначать (10, 5, 5). Тогда за один ход можно получить любую из шести позиций: (11, 5, 5), (20, 5, 5), (10, 6, 5), (10, 10, 5), (10, 5, 6), (10, 5, 10). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 60. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах будет 60 или больше камней.

В начальный момент в первой куче было 20 камней, во второй куче 10 камней, в третьей куче – S камней; 1 ≤ S ≤ 29.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
 

Вопрос 1

Найдите такое значение S, при котором у Вани есть выигрышная стратегия, при которой он побеждает своим первым ходом.
 

Вопрос 2 

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

 
Вопрос 3

Найдите такое значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

 
Формат ввода ответов 

На каждое задание ответы пишите с новой строки. Например, если ответ на первый вопрос 1, на второй 2 и 3, на третий 4, то ответы надо записать так:

1
2 3
4


time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя