Олимпиадный тренинг

Задача . Делители с диапазоном - 04


Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа А логическое выражение
\((x \geq 15) \rightarrow ( \neg ДЕЛ(x, 3) \rightarrowДЕЛ(x, 2)) \vee (x-A\geq 10)\)
тождественно истинно (т.е. принимает значение 1) при любом целом натуральном значении переменной х.

time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя