Олимпиадный тренинг

Задача . Делители с диапазоном - 05


Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа А логическое выражение
\((x < 100) \rightarrow ((\neg ДЕЛ(x, 3) \wedge \neg ДЕЛ(x, 4))\rightarrow ДЕЛ(x, 5)) \vee (x+A\geq 60)\)
тождественно истинно (т.е. принимает значение 1) при любом целом натуральном значении переменной х.

time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
Python1
Комментарий учителя