Олимпиадный тренинг

Задача . Перестановки


Задано множество из n различных натуральных чисел. Перестановку элементов этого множества назовем k-перестановкой, если для любых двух соседних элементов этой перестановки их наибольший общий делитель не менее k. Например, если задано множество элементов S = {6, 3, 9, 8}, то перестановка {8, 6, 3, 9} является 2-перестановкой, а перестановка {6, 8, 3, 9} – нет.

Перестановка {p1, p2, …, pn} будет лексикографически меньше перестановки {q1, q2, …, qn}, если существует такое натуральное число i (1 ≤ i ≤ n), для которого pj = qj при j < i и pi < qi.

В качестве примера упорядочим все k-перестановки заданного выше множества в лексикографическом порядке. Например, существует ровно четыре 2-перестановки множества S: {3, 9, 6, 8}, {8, 6, 3, 9}, {8, 6, 9, 3} и {9, 3, 6, 8}. Соответственно, первой 2-перестановкой в лексикографическом порядке является множество {3, 9, 6, 8}, а четвертой – множество {9, 3, 6, 8}.

Требуется написать программу, позволяющую найти m-ую k-перестановку в этом порядке.

Входные данные
Входной файл в первой строке содержит три натуральных числа – n (1 ≤ n ≤ 16), m и k (1 ≤ m, k ≤ 109). Вторая строка содержит n различных натуральных чисел, не превосходящих 109. Все числа в строках разделены пробелом.

Выходные данные
В выходной файл необходимо вывести m-ую k-перестановку заданного множества или –1, если такой нет.
Примеры
Входные данные Выходные данные
1 4 1 2
6 8 3 9
3 9 6 8
2 4 4 2
6 8 3 9
9 3 6 8
3 4 5 2
6 8 3 9
-1

time 2000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
С++ Mingw-w642
Комментарий учителя