Олимпиадный тренинг

Задача . Поляков - 234


Задача

Темы:
Пусть N(k) = 9 500 000 + k, где k – натуральное число. Найдите пять наименьших значений k, при которых N(k) нельзя представить в виде произведения трёх натуральных чисел, больших 1. В ответе запишите найденные значения k в порядке убывания, справа от каждого значения запишите наибольший делитель N(k), не равный самому числу.
Формат ответа: каждая пара чисел с новой строки, разделенные одним пробелом.

time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя