Олимпиадный тренинг

Задача . статград 14.02.23 - 1


Задача

Темы:
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в меньшую кучу любое количество камней от одного до количества камней в этой куче. Изменять количество камней в большей куче не разрешается. Если кучи содержат равное количество камней, добавлять камни можно в любую из них. Пусть, например, в начале игры в первой куче 3 камня, а во второй – 5 камней, будем обозначать такую позицию (3, 5). Петя первым ходом должен добавить в первую кучу от 1 до 3 камней, он может получить позиции (4, 5), (5, 5) и (6, 5). Если Петя создаёт позицию (4, 5), то Ваня своим ходом может добавить от 1 до 4 камней в первую кучу, а если Петя создаёт позицию (6, 5), то Ваня может добавить от 1 до 5 камней во вторую кучу, так как теперь она стала меньшей. В позиции (5, 5) Ваня может добавить от 1 до 5 камней в любую кучу.
Игра завершается, когда общее количество камней в кучах становится более 45. Победителем считается игрок, сделавший последний ход, то есть первым получивший 46 или больше камней в двух кучах. Известно, что Петя смог выиграть первым ходом. Какое наименьшее число камней могло быть суммарно в двух кучах?
 

time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя