Олимпиадный тренинг

Задача . Рейтинг


Новый учитель математики ввел в школе оригинальную систему оценки учеников – рейтинговую. На каждом уроке школьнику предлагалось выполнить задание, состоящее из нескольких задач. После этого учитель увеличивал рейтинг школьника на число, равное отношению количества решенных им сегодня задач к количеству задач, решенных им на прошлом занятии. Например, если сегодня ученик решил 5 задач, а вчера – две, то к его рейтингу сегодня прибавится = 2.5. Изначально рейтинг равен нулю; он начинает увеличиваться со второго дня. Если в один из дней какой-то ученик не решал ни одной задачи, то учитель объявлял его полной бездарностью и переводил в другой класс (с облегченным изучением математики), поэтому каждый день все ученики старались решить хотя бы одну задачу.

Школьники быстро обнаружили, что для получения наибольшего рейтинга им далеко не всегда нужно решать все задачи. Им известно, сколько задач учитель будет давать в каждый из дней. Помогите им определить, в какой день сколько задач следует решить, чтобы в итоге получить наибольший рейтинг.

Входные данные
В первой строке вводится одно натуральное число N (1 ≤ N ≤ 1 000) – количество уроков, которые провел в школе учитель до того, как его уволили.

В следующей строке содержатся числа a1, a2, …, aN– количество задач, которые учитель предложил школьникам на первом, втором, …, N-м уроках соответственно (1 ≤ ai ≤ 100).

Выходные данные
В первой строке выведите максимальный рейтинг, который может получить школьник за N дней, с точностью не менее 0.001.

Во второй строке выведите N чисел – количество задач, которые должен решить школьник в каждый из дней. Если вариантов несколько, выведите один любой из них.
Примеры
Входные данныеВыходные данные
1 3
1 2 3
4.00000
1 1 3 
2 3
1 10 8
10.800000
1 10 8

time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
Python3
Комментарий учителя