Олимпиадный тренинг

Задача . 001


Задача

Темы:

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R по следующему принципу.

1) Строится двоичная запись числа N.
2) К этой записи дописываются справа ещё два разряда по следующему правилу:
а) Складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописываются в конец числа (справа). Например, запись 11100 преобразуется в запись 111001.
б) Над этой записью производятся те же действия - справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите минимальное число R, которое превышает 42 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе.


time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя