Олимпиадный тренинг

Задача . ИН1712202_27


Задача

Темы:
В лаборатории проводится эксперимент, состоящий из множества испытаний. Результат каждого испытания представляется в виде пары чисел. Для визуализации результатов эта пара рассматривается как координаты точки на плоскости, и на чертеже отмечаются точки, соответствующие всем испытаниям.
По результатам эксперимента проводится кластеризация полученных результатов: на плоскости выделяется несколько кластеров – кругов радиуса не более 3 единиц так, что каждая точка попадает ровно в один кластер.
Центром кластера считается та из входящих в него точек, для которой минимально максимальное из расстояний до всех остальных точек кластера. При этом расстояние вычисляется по стандартной формуле расстояния между точками на евклидовой плоскости.
Радиусом кластера считается максимальное из расстояний от центра до остальных точек кластера.

Обработка результатов эксперимента включает следующие шаги:
   1) кластер, содержащий наибольшее число точек, исключается;
   2) определяются центры и радиусы всех оставшихся кластеров;
   3) вычисляется средний радиус оставшихся кластеров.

В файле записан протокол проведения эксперимента. Каждая строка файла содержит два числа: координаты X и Y точки, соответствующей одному испытанию. По данному протоколу надо определить средний радиус всех кластеров за исключением содержащего наибольшее число точек.

Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. По данным каждого из представленных файлов определите средний радиус по описанным выше правилам.
В ответе запишите два числа через пробел: сначала средний радиус для файла A, затем для файла B. В качестве значения указывайте целую часть от умножения найденного числового значения на 10 000.

27А.txt   27B.txt

time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя