Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. При этом нельзя повторять ход, который только что сделал второй игрок. Например, если в начале игры в куче 3 камня, Петя может первым ходом получить кучу из 4, 5 или 6 камней. Если Петя получил кучу из 5 камней (добавил 2 камня), то следующим ходом Ваня может получить 6 или 10 камней. Получить 7 камней Ваня не может, так как для этого нужно добавить 2 камня, а такой ход только что сделал Петя. Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 50. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 50 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 49. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Для игры, описанной в задании 19, существует несколько таких значений S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найдите наименьшее и наибольшее из таких значений S. В ответе запишите сначала наименьшее, затем наибольшее значение