(ЕГЭ-2024) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 65. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах оказывается 65 или больше камней.
В начальный момент в первой куче было шесть камней, во второй куче – S камней; 1 < S < 58.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Задание 21
Найдите минимальное значение S, при котором одновременно выполняются два условия:
– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.