Олимпиадный тренинг

Задача . Задание 4-20


Задача

Темы:
Два игрока, Паша и Витя, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 10 камней, а в другой 5 камней; такую позицию в игре будем обозначать (10, 5). Тогда за один ход можно получить любую из четырёх позиций:
(11, 5), (30, 5), (10, 6), (10, 15). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 60.  Если при этом в куче оказалось не более 79 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник, при этом считается, что противник сделал ход.
В начальный момент в первой куче было восемь камней, во второй куче – S камней; 1 ≤ S ≤ 51.

Задание 20.
Укажите, сколько существует значений S, при которых у Паши есть выигрышная стратегия, причём одновременно выполняются два условия:
– Паша не может выиграть за один ход;
– Паша может выиграть своим вторым ходом независимо от того, как будет ходить Витя.

 

time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя