Олимпиадный тренинг

Задача . 43812


Задача

Темы:

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя.

За один ход игрок может добавить 3 камня, добавить 6 камней или увеличить количество камней в 2 раза, при этом нельзя повторять последний ход соперника.

Игра завершается в тот момент, когда количество камней в куче становится более 40. Победителем считается игрок, сделавший последний ход.

В начальный момент в куче было S камней, 2 ≤ S ≤ 36.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

 

Задание 19

Укажите такое максимальное допустимое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 20

Найдите максимальное значение S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Задание 21

Найдите минимальное и максимальное значения S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.


Формат записи ответа:
На каждый вопрос ответ записывайте в отдельной строке, отделяя числа внутри строки пробелом.
Если ответ на какой-то вопрос отсутствует, напишите число 0.


time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя