Олимпиадный тренинг

Задача . 2025_досрок_19


Задача

Темы:
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:
− убрать из кучи два камня,
− уменьшить количество камней в куче в два раза (количество камней, полученное при делении, округляется до меньшего).
Игра завершается в тот момент, когда количество камней в куче становится не более 87.
Победителем считается игрок, сделавший последний ход, т.е. первым получивший в куче 87 камней или меньше.
В начальный момент в куче было S камней; S > 88.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Укажите минимальное значение S, когда Петя не может выиграть за один ход, но при этом Ваня может выиграть своим первым ходом при любой игре Пети.

time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
Python1
Комментарий учителя