Олимпиадный тренинг

Задача . 39


Задача

Темы:
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу два камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 17 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 25. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 25 или больше камней.
В начальный момент в куче было S камней, 1 ≤ S ≤ 24.
Задание 19.
Найдите минимальное значение S, при котором Ваня выигрывает своим первым ходом при любой игре Пети?
Задание 20.
Сколько существует значений S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
− Петя не может выиграть за один ход;
− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Задание 21
Найдите два наибольших значения S, при которых одновременно выполняются два условия:
– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Найденные значения запишите в ответе в порядке возрастания.

Ответ на каждое задание запишите в отдельной строке:
  1. в первой строке на задание 1;
  2. во второй на задание 2;
  3. в третьей на задание 3.
Если в ответе на какое-либо задание необходимо указать два числа, то в строке необходимо их записать через один пробел
 

time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя