Олимпиадный тренинг

Задача . 108


Задача

Темы:
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может уменьшить количество камней в три раза (количество камней, полученное при делении, округляется до меньшего) или убрать из кучи 10 камней. Например, из кучи из 25 камней можно получить кучу из 8 или 15 камней. Игра завершается в тот момент, когда количество камней в куче становится не более 10. Победителем считается игрок, сделавший последний ход. В начальный момент в куче было S камней (S ≥ 11).
Задание 19.
Известно, что Ваня выиграл своим первым ходом после неудачного хода Пети. При каком максимальном значении S такое возможно?
Задание 20.
Найдите минимальное и максимальное значения S, при которых у Пети есть выигрышная стратегия, причём Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответе в порядке возрастания.
Задание 21
Сколько существует значений S, при которых Ваня имеет выигрышную стратегию за один или два хода, при этом не имеет выигрышной стратегии в один ход?
Ответ на каждое задание запишите в отдельной строке:
  1. в первой строке на задание 1;
  2. во второй на задание 2;
  3. в третьей на задание 3.
Если в ответе на какое-либо задание необходимо указать два числа, то в строке необходимо их записать через один пробел
 

time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя