Статья Автор: Деникина Н.В., Деникин А.В.

Линейная регрессия

Линейная регрессия — это самый простой и популярный алгоритм для решения задач регрессии. Его идею можно объяснить одной фразой:

Мы находим прямую линию, которая лучше всего показывает зависимость между одними данными (признаками) и другими (целевой переменной).

Представьте, что у вас есть данные: по оси X — температура на улице, по оси Y — продажи мороженого. Мы рисуем точки и видим, что чем выше температура, тем больше продажи. Линейная регрессия проводит через эти точки такую прямую, чтобы она была как можно "ближе" ко всем точкам сразу. Эта линия и будет нашей моделью-предсказателем.
 

Как работает линейная регрессия?

Шаг 1: Рисуем точки

Представьте график, где:

  • По горизонтали (ось X) - температура
  • По вертикали (ось Y) - количество проданного мороженого

Каждый день - это точка на графике.

Шаг 2: Проводим линию

Линейная регрессия ищет такую прямую линию, которая лучше всего проходит через все точки.

 

Шаг 3: Делаем предсказания

Теперь, если нам скажут "завтра будет +25°C", мы:

  1. Находим 25 на оси X
  2. Смотрим на линию
  3. Читаем ответ на оси Y

Математика (очень простая!)

Прямая линия описывается формулой: y = k × x + b

  • y - то, что предсказываем (продажи мороженого)
  • x - то, что знаем (температура)
  • k - насколько сильно влияет температура (угол наклона)
  • b - базовое значение (где линия пересекает ось Y)

Пример: y = 3 × x + 10

  • При 0°C: y = 3 × 0 + 10 = 10 штук
  • При 10°C: y = 3 × 10 + 10 = 40 штук
  • При 20°C: y = 3 × 20 + 10 = 70 штук

Задача модели: Найти правильные значения k и b, чтобы линия лучше всего подходила к нашим точкам!

Печать