Олимпиадный тренинг

Задача . K. Lonely Numbers


In number world, two different numbers are friends if they have a lot in common, but also each one has unique perks.

More precisely, two different numbers \(a\) and \(b\) are friends if \(gcd(a,b)\), \(\frac{a}{gcd(a,b)}\), \(\frac{b}{gcd(a,b)}\) can form sides of a triangle.

Three numbers \(a\), \(b\) and \(c\) can form sides of a triangle if \(a + b > c\), \(b + c > a\) and \(c + a > b\).

In a group of numbers, a number is lonely if it doesn't have any friends in that group.

Given a group of numbers containing all numbers from \(1, 2, 3, ..., n\), how many numbers in that group are lonely?

Input

The first line contains a single integer \(t\) \((1 \leq t \leq 10^6)\) - number of test cases.

On next line there are \(t\) numbers, \(n_i\) \((1 \leq n_i \leq 10^6)\) - meaning that in case \(i\) you should solve for numbers \(1, 2, 3, ..., n_i\).

Output

For each test case, print the answer on separate lines: number of lonely numbers in group \(1, 2, 3, ..., n_i\).

Note

For first test case, \(1\) is the only number and therefore lonely.

For second test case where \(n=5\), numbers \(1\), \(3\) and \(5\) are lonely.

For third test case where \(n=10\), numbers \(1\), \(5\) and \(7\) are lonely.


Примеры
Входные данныеВыходные данные
1 3
1 5 10
1
3
3

time 1500 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
С++ Mingw-w644
Комментарий учителя