Олимпиадный тренинг

Задача . N. Number Reduction


You are given a positive integer \(x\).

You can apply the following operation to the number: remove one occurrence of any digit in such a way that the resulting number does not contain any leading zeroes and is still a positive integer. For example, \(10142\) can be converted to \(1142\), \(1042\), \(1012\) or \(1014\) (note that \(0142\) is not a valid outcome); \(10\) can be converted to \(1\) (but not to \(0\) since it is not positive).

Your task is to find the minimum positive integer that you can obtain from \(x\) if you can apply the aforementioned operation exactly \(k\) times.

Input

The first line contains a single integer \(t\) (\(1 \le t \le 10^5\)) — the number of test cases.

The first line of each test case contains a single integer \(x\) (\(1 \le x < 10^{500000}\)).

The second line contains a single integer \(k\) (\(0 \le k < |x|\)), where \(|x|\) is the length of the number \(x\).

The sum of \(|x|\) over all test cases does not exceed \(5 \cdot 10^5\).

Output

For each test case, print one integer — the minimum positive number that you can obtain from \(x\) if you can apply the operation exactly \(k\) times.


Примеры
Входные данныеВыходные данные
1 5
10000
4
1337
0
987654321
6
66837494128
5
7808652
3
1
1337
321
344128
7052

time 2000 ms
memory 512 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
С++ Mingw-w645
Комментарий учителя