Хоссам проснулся, ему стало скучно, и поэтому он решил придумать интересный массив, позвав своего друга Хазема.
Сейчас у них есть массив \(a\), состоящий из \(n\) положительных целых чисел. Хоссам выберет число \(a_i\), Хазем выберет число \(a_j\).
Посчитайте количество интересных пар \((a_i, a_j)\), удовлетворяющих всем следующим условиям:
- \(1 \le i, j \le n\);
- \(i \neq j\);
- Модуль разности \(|a_i - a_j|\) должен быть равен максимальному модулю разности по всем парам в массиве. Более формально: \(|a_i - a_j| = \max_{1 \le p, q \le n} |a_p - a_q|\).
Выходные данные
Для каждого набора входных данных выведите одно число — количество интересных пар \((a_i, a_j)\)
Примечание
В первом наборе есть две интересные пары:
- Хоссам выбирает четвертое число \(8\), Хазем выбирает пятое число \(1\).
- Хоссам выбирает пятое число \(1\), Хазем выбирает четвертое число \(8\).
Во втором наборе есть четыре интересные пары:
- Хоссам выбирает второе число \(2\), Хазем выбирает шестое число \(10\).
- Хоссам выбирает шестое число \(10\), Хазем выбирает второе число \(2\).
- Хоссам выбирает пятое число \(2\), Хазем выбирает шестое число \(10\).
- Хоссам выбирает шестое число \(10\), Хазем выбирает пятое число \(2\).
Примеры
| № | Входные данные | Выходные данные |
|
1
|
2 5 6 2 3 8 1 6 7 2 8 3 2 10
|
2
4
|