Олимпиадный тренинг

Задача . D. Digital Wallet


There are \(N\) arrays, each array has \(M\) positive integer elements The \(j\)-th element of the \(i\)-th array is \(A_{i,j}\).

Initially, Chaneka's digital wallet contains \(0\) money. Given an integer \(K\). Chaneka will do \(M-K+1\) operations. In the \(p\)-th operation, Chaneka does the following procedure:

  1. Choose any array. Let's say Chaneka chooses the \(x\)-th array.
  2. Choose an index \(y\) in that array such that \(p \leq y \leq p+K-1\).
  3. Add the value of \(A_{x, y}\) to the total money in the wallet.
  4. Change the value of \(A_{x, y}\) into \(0\).

Determine the maximum total money that can be earned!

Input

The first line contains three integers \(N\), \(M\), and \(K\) (\(1 \leq N \leq 10\); \(1 \leq M \leq 10^5\); \(1 \leq K \leq \min(10, M)\)) — the number of arrays, the size of each array, and the constant that describes the operation constraints.

The \(i\)-th of the next \(N\) lines contains \(M\) integers \(A_{i,1}, A_{i,2}, \ldots, A_{i,M}\) (\(1 \leq A_{i,j} \leq 10^6\)) — the elements of the \(i\)-th array.

Output

Output an integer representing the maximum total money that can be earned.

Note

In the first example, the following is a sequence of operations of one optimal strategy:

  1. Choosing element \(A_{1, 1}\) with a value of \(10\).
  2. Choosing element \(A_{3, 2}\) with a value of \(8\).
  3. Choosing element \(A_{2, 3}\) with a value of \(9\).

So the total money earned is \(10+8+9=27\).

In the second example, the following is a sequence of operations of one optimal strategy:

  1. Choosing element \(A_{3, 2}\) with a value of \(8\).
  2. Choosing element \(A_{1, 2}\) with a value of \(9\).

So the total money earned is \(8+9=17\).

In the third example, the following is a sequence of operations of one optimal strategy:

  1. Choosing element \(A_{1, 3}\) with a value of \(10\).
  2. Choosing element \(A_{1, 2}\) with a value of \(9\).

So the total money earned is \(10+9=19\).


Примеры
Входные данныеВыходные данные
1 3 3 1
10 4 2
8 1 9
4 8 2
27
2 3 3 2
5 9 4
1 3 1
2 8 7
17
3 3 4 3
5 9 10 1
1 3 1 5
2 5 7 2
19

time 2000 ms
memory 512 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
С++ Mingw-w643
Комментарий учителя