Олимпиадный тренинг

Задача . кп1921-57


Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

а) добавить в любую кучу один камень; б) увеличить количество камней в любой куче в четыре раза.

Игра завершается в тот момент, когда суммарное количество камней в двух кучах становится не менее 129, побеждает игрок, сделавший последний ход. В начальный момент в первой куче было 4 камня, а во второй – S камней, 1 ≤ S ≤ 124.

Задание 19.
Известно, что Ваня выиграл своим первым ходом после первого хода Пети. Назовите минимальное значение S, при котором это возможно.

Задание 20.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
− Петя не может выиграть за один ход;
− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания.

Задание 21
Найдите значение S, при котором одновременно выполняются два условия:
– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.


time 500 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя