(И. Осипов) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат три кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) три камня или увеличить количество камней в куче в два раза. Например, пусть в первой куче 10 камней, во второй 7, а в третьей 4 камня; такую позицию в игре будем обозначать (10, 7, 4). Тогда за один ход можно получить любую из шести позиций: (13, 7, 4), (20, 7, 4), (10, 10, 4), (10, 14, 4), (10, 7, 7), (10, 7, 8). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 71. Победителем считается игрок, сделавший последний ход, т. е. первым получивший такую позицию, что в кучах всего будет 71 или больше камней. В начальный момент в первой куче было семь камней, во второй куче пять камней, в третьей куче
– S камней; 1 ≤ S ≤ 58.
Задание 19. При некотором значении S Ваня одержал победу свои первым ходом после неудачного хода Пети. Укажите минимальное значение S, при котором это возможно.\ Задание 20. Найдите минимальное и максимальное значение S, при которых Петя выигрывает вторым ходом при любом ходе Вани.\ Задание 21 Найдите значение S, при котором одновременно выполняются два условия:
– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.