Дополнительный код (дополнение до двух)

Нумерация двоичных чисел в представлении c дополнением до двух.
Чаще всего для представления отрицательных чисел используется код с дополнением до двух (англ. Two's complement).
Алгоритм получения дополнительного кода числа:
- если число неотрицательное, то в старший разряд записывается ноль, далее записывается само число;
- если число отрицательное, то все биты модуля числа инвертируются, то есть все единицы меняются на нули, а нули — на единицы, к инвертированному числу прибавляется единица, далее к результату дописывается знаковый разряд, равный единице.
В качестве примера переведём число −5 в дополнительный восьмибитный код. Прямой код модуля −5: 0000101, обратный — 1111010, прибавляем 1, получаем 1111011, приписываем 1 в качестве знакового разряда, в результате получаем 11111011.
Также дополнительный код отрицательного числа A, хранящегося в n битах, равен 2n−|A|. По сути, дополнительный код представляет собой дополнение |A| до 0: так как в n-разрядной арифметике 2n=0 (двоичная запись этого числа состоит из единицы и n нулей, а в n-разрядную ячейку помещаются только n младших разрядов, то есть n нулей), то верно равенство 2n−|A|+|A|=0.
Для получения из дополнительного кода самого числа нужно инвертировать все разряды кода и прибавить к нему единицу. Можно проверить правильность, сложив дополнительный код с самим числом: результат должен быть равен 2n. Переведём 11111011 обратно. Инвертируем — 00000100, прибавляем 1, получаем 00000101 — модуль исходного числа −5. Проверим: 11111011+00000101=100000000.
Можно получить диапазон значений [−2n−1;2n−1−1].
Длинная арифметика для чисел, представленных с помощью кода с дополнением до двух
Дополнительный код также удобно использовать для вычислений в длинной арифметике, особенно для операций сложения и вычитания. Это операции удобно выполнять с числами одинаковой длины, поэтому в старшие разряды меньшего числа нужно поместить нули (если число положительно) или единицы (если число отрицательно). Тогда числа будут выглядеть следующим образом: в старших разрядах бесконечное число нулей (единиц), а в младших разрядах уже встречаются и нули, и единицы, которые кодируют само число, а не знак. Удобство заключается в том, что нам не обязательно проделывать операции сложения с каждой парой бит, если мы знаем, что на этом отрезке в числах стоят либо единицы, либо нули. Таким образом, на этом отрезке в получившемся числе тоже будут либо только единицы, либо только нули. Операцию сложения можно выполнить только один раз для старших битов, таким образом мы узнаем знак получившегося числа. Вычитание тоже выполняется просто: инвертируем число, прибавляем один и получаем это число с минусом, затем просто делаем сложение. Однако умножение с числами, представленными дополнительным кодом, выполнять не всегда оптимально: алгоритм либо слишком медленный (наивный алгоритм работает за O(n2)), либо слишком сложный. Лучше для умножение использовать прямой код (бит под знак). Тогда можно числа перевести в десятичную систему счисления, выполнить быстрое преобразование Фурье за O(nlogn), затем перевести их обратно в двоичную. Обычно такой алгоритм работает быстрее, чем выполнение операции напрямую с двоичными числами. Для деления обычно тоже лучше использовать прямой код.
Достоинства представления чисел с помощью кода с дополнением до двух
- Возможность заменить арифметическую операцию вычитания операцией сложения и сделать операции сложения одинаковыми для знаковых и беззнаковых типов данных, что существенно упрощает архитектуру процессора и увеличивает его быстродействие.
- Нет проблемы двух нулей.
Недостатки представления чисел с помощью кода с дополнением до двух
- Ряд положительных и отрицательных чисел несимметричен, но это не так важно: с помощью дополнительного кода выполнены гораздо более важные вещи, желаемые от способа представления целых чисел.
- В отличие от сложения, числа в дополнительном коде нельзя сравнивать как беззнаковые, или вычитать без расширения разрядности.
Несмотря на недостатки, дополнение до двух в современных вычислительных системах используется чаще всего.