Описание

Ограничение по времени: 1000 ms
Ограничение по памяти: 256 Mb

Ответы на вопросы

Задача: Сократи векторы

На плоскости задано N векторов – направленных отрезков, для каждого из которых известны координаты начала и конца (вектор, у которого начало и конец совпадают, называется нуль-вектором, можно считать, что нуль-вектор лежит на любой прямой, которая через него проходит). Введем следующие три операции над направленными отрезками на плоскости:

1) Направленные отрезки ненулевой длины, лежащие на пересекающихся прямых, можно заменить на их сумму, причем единственным образом. В этом случае отрезки переносятся вдоль своих прямых так, чтобы их начала совпадали с точкой пересечения прямых, и складываются по правилу сложения векторов (правилу параллелограмма, при этом началом результирующего вектора является точка пересечения прямых).

2) Направленные отрезки, лежащие на одной прямой, также можно заменить на их сумму. Для этого один из отрезков (любой) нужно перенести в начало второго из них и сложить по правилу сложения векторов на прямой:

Это правило применимо и в случае, когда один из векторов, или даже оба, являются нуль-векторами.

Заметим, что если складываемые векторы противоположно направлены и имеют одну и ту же длину, то результатом их сложения является нуль вектор.

3) В любой точке плоскости можно породить два противоположно направленных отрезка равной (в том числе и нулевой) длины:

Будем говорить, что две системы векторов эквивалентны, если от одной системы можно перейти к другой с помощью конечной последовательности перечисленных выше операций.

Требуется получить любую систему векторов, эквивалентную заданной, состоящую из как можно меньшего числа векторов.

Входные данные
В первой строке записано число N – количество заданных векторов (1 < N ≤ 1000). В каждой из следующих N строк через пробел записаны четыре числа, обозначающие координаты начала и конца каждого из векторов соответственно. Все координаты – целые числа, по модулю не превосходящие 1000.

Выходные данные
В первой строке следует записать число M – количество векторов в полученной системе (1 ≤ M ≤ N). В каждой из следующих M строк через пробел должны находиться четыре числа, обозначающие координаты начала и конца каждого из векторов соответственно. Все координаты – вещественные числа, записанные с 6 цифрами после точки.


Прикрепите файл с исходным кодом программы:
     
или введите исходный код на языке:


Правила оформления программ и список ошибок при автоматической проверке задач
           

Ваш ответ:

Загруженные файлы:


Нет

Примечание учителя: