Олимпиадный тренинг

Задача . Кот Гусь и случайная матрица


Кот Гусь подготовил для Ника Фьюри прямоугольную таблицу a размера \(n \cdot m\), содержащую числа от 0 до p−1. Ник Фьюри сразу понял, что каждое число в этой таблице выбрано случайно равновероятно от 0 до p−1, независимо от остальных.

Ваша задача — найти прямоугольную подматрицу этой таблицы, в которой сумма делится на p. Среди всех таких подматриц нужно найти ту, в которой сумма элементов максимальна.

Формально, вам необходимо найти такие \(1 <= i_1 <= i_2 <= n\), \(1 <= j_1 <= j_2 <= m\), что сумма ax,y по всем \(i_1 <= x <= i_2\), \(j_1 <= y <= j_2\) делится на p, и среди таких имеет максимальную сумму.

Входные данные
В первой строке расположено три целых числа n, m, p (\(1 <= n·m, p <= 1 000 000\)) — размерности матрицы и число, на которое должна делится сумма подматрицы.
В следующих n строках расположено по m целых чисел, j-е число в i-й строке равно ai,j (\(0 <= a_{i,j} <= p ? 1\)).
Гарантируется, что каждое число в a выбрано независимо случайно равновероятно от 0 до p−1.

Выходные данные
Выведите одно целое число — максимальную сумму прямоугольной подматрицы, в которой сумма делится на p. Если таких нет, выведите 0.

 

Примеры
Входные данные Выходные данные
1
6 7 5
0 0 3 0 1 0 4
0 2 3 0 2 2 1
2 4 1 4 4 0 3
1 1 0 2 0 3 2
3 0 3 1 0 1 2
1 2 0 0 3 3 1
65

time 3500 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
С++ Mingw-w648
Комментарий учителя