Олимпиадный тренинг

Задача . Московские гориллы


Зимой обитателям Московского зоопарка очень скучно, в частности, это касается горилл. Вы решили развлечь их и принесли в зоопарк перестановку \(p\) длины \(n\).

Напомним, что перестановкой длины \(n\) называется последовательность целых чисел от \(1\) до \(n\), в которой каждое такое число встречается ровно один раз. Например, последовательности \([3, 1, 2]\) и \([1, 4, 2, 3]\) являются перестановками, а последовательности \([3, 4]\) и \([1, 2, 2, 3]\) нет.

У горилл помимо вашей оказалась и своя перестановка \(q\) длины \(n\). Они предложили вам посчитать количество пар целых чисел \(l, r\) (\(1 \le l \le r \le n\)), таких что \(\operatorname{MEX}([p_l, p_{l+1}, \ldots, p_r])=\operatorname{MEX}([q_l, q_{l+1}, \ldots, q_r])\).

Вы не хотите отказать гориллам, поэтому попытаетесь решить эту задачу.

\(\operatorname{MEX}\) последовательности — это минимальное целое положительное число, отсутствующее в этой последовательности. Например, \(\operatorname{MEX}([1, 3]) = 2\), \(\operatorname{MEX}([5]) = 1\), \(\operatorname{MEX}([3, 1, 2, 6]) = 4\).

Формат входных данных
Первая строка содержит одно целое число \(n\) (\(1 \le n \le 2 \cdot 10^5\)) — длину перестановок.

Вторая строка содержит \(n\) целых чисел \(p_1, p_2, \ldots, p_n\) (\(1 \le p_i \le n\)) — элементы перестановки \(p\).

Третья строка содержит \(n\) целых чисел \(q_1, q_2, \ldots, q_n\) (\(1 \le q_i \le n\)) — элементы перестановки \(q\).

Формат выходных данных
Выведите одно целое число — ответ на задачу.

Обратите внимание, что ответ может быть больше, чем возможное значение 32-битной целочисленной переменной, поэтому необходимо использовать 64-битные целочисленные типы данных (тип int64 в языке Pascal, тип long long в C и C++, тип long в Java и C#). Язык Python будет корректно работать и с типом int.


Примеры
Входные данныеВыходные данные
1 3
1 3 2
2 1 3
2
2 7
7 3 6 2 1 5 4
6 7 2 5 3 1 4
16
3 6
1 2 3 4 5 6
6 5 4 3 2 1
11

time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
С++ Mingw-w641
Python1
Комментарий учителя