Фрагмент звёздного неба спроецирован на плоскость с декартовой системой координат. Учёный решил провести кластеризацию полученных точек, являющихся изображениями звёзд, то есть разбить их множество на N непересекающихся непустых подмножеств (кластеров), таких что точки каждого подмножества лежат внутри прямоугольника со сторонами длиной H и W, причём эти прямоугольники между собой не пересекаются. Стороны прямоугольников не обязательно параллельны координатным осям. Гарантируется, что такое разбиение существует и единственно для заданных размеров прямоугольников.
Будем называть центром кластера точку этого кластера, сумма расстояний от которой до всех остальных точек кластера минимальна. Для каждого кластера гарантируется единственность его центра. Расстояние между двумя точками на плоскости
A(x1, y1)
и
B(x2, y2)
вычисляется по формуле:
\(d(A, B) = \sqrt{((x_2-x_1)^2+(y_2-y_1)^2}\)
В файле A хранятся координаты точек двух кластеров, где H = 3, W = 3 для каждого кластера. В каждой строке записана информация о расположении на карте одной точки: сначала координата x, затем координата y. Известно, что количество точек не превышает 1000.
В файле Б хранятся координаты точек трёх кластеров, где H = 3, W = 3 для каждого кластера. Известно, что количество точек не превышает 10 000. Структура хранения информации в файле Б аналогична файлу А.
Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px – среднее арифметическое абсцисс центров кластеров, и Py – среднее арифметическое ординат центров кластеров.
В ответе запишите четыре числа:
в первой строке сначала целую часть произведения Px × 10 000, затем целую часть произведения Py × 10 000 для файла А, во второй строке – аналогичные данные для файла Б.
Значения в каждой строке разделяйте одним пробелом.
Возможные данные одного из файлов проиллюстрированы графиком.
Внимание! График приведён в иллюстративных целях для произвольных значений, не имеющих отношения к заданию.
Для выполнения задания используйте данные из прилагаемого файла.