Олимпиадный тренинг

Задача . A2. Префиксные перевороты (сложная версия)


Это сложная версия задачи. Различия между версиями заключаются в ограничениях на \(n\) и необходимое количество операций. Вы можете делать взломы только если обе версии задачи сданы.

Есть две бинарные строки \(a\) и \(b\) длины \(n\) (бинарная строка это строка, состоящая из символов \(0\) и \(1\)). За одну операцию вы выбираете префикс строки \(a\), меняете все биты этого префикса на другие (\(0\) меняется на \(1\), \(1\) меняется на \(0\)) и переворачиваете этот префикс. За одну операцию вы выполняете оба этих действия.

Например, если \(a=001011\) и вы выбираете префикс длины \(3\), строка становится равной \(011011\). Затем, если вы вы выберете всю строку как префикс для операции, она станет равной \(001001\).

Ваша задача превратить строку \(a\) в строку \(b\) за не больше, чем \(2n\) операций. Можно доказать, что это всегда возможно.

Входные данные

В первой строке находится единственное целое число \(t\) (\(1\le t\le 1000\))  — количество наборов входных данных. Следующие \(3t\) строк содержат описания наборов входных данных.

В первой строке каждого набора входных данных находится единственное целое число \(n\) (\(1\le n\le 10^5\))  — длина бинарных строк.

Следующие две строки содержат две бинарные строки \(a\) и \(b\) длины \(n\).

Гарантируется, что сумма \(n\) по всем наборам входных данных не превосходит \(10^5\).

Выходные данные

Для каждого набора входных данных выведите целое число \(k\) (\(0\le k\le 2n\)), затем \(k\) целых чисел \(p_1,\ldots,p_k\) (\(1\le p_i\le n\)). Здесь \(k\) равно количеству операций, которое вы использовали и \(p_i\) равно длине префикса в \(i\)-й операции.

Примечание

В первом наборе входных данных процесс превращения выглядит так: \(01\to 11\to 00\to 10\).

Во втором наборе входных данных процесс превращения выглядит так: \(01011\to 00101\to 11101\to 01000\to 10100\to 00100\to 11100\).

В третьем наборе входных данных данные строки уже совпадают. Другим решением будет, например, сделать операцию с префиксом длины \(2\), от чего строка \(a\) не поменяется.


Примеры
Входные данныеВыходные данные
1 5
2
01
10
5
01011
11100
2
01
01
10
0110011011
1000110100
1
0
1
3 1 2 1
6 5 2 5 3 1 2
0
9 4 1 2 10 4 1 2 1 5
1 1

time 1000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
С++ Mingw-w644
Комментарий учителя