Олимпиадный тренинг

Задача . K. Knitting Batik


Mr. Chanek wants to knit a batik, a traditional cloth from Indonesia. The cloth forms a grid \(a\) with size \(n \times m\). There are \(k\) colors, and each cell in the grid can be one of the \(k\) colors.

Define a sub-rectangle as an ordered pair of two cells \(((x_1, y_1), (x_2, y_2))\), denoting the top-left cell and bottom-right cell (inclusively) of a sub-rectangle in \(a\). Two sub-rectangles \(((x_1, y_1), (x_2, y_2))\) and \(((x_3, y_3), (x_4, y_4))\) have the same pattern if and only if the following holds:

  • they have the same width (\(x_2 - x_1 = x_4 - x_3\));
  • they have the same height (\(y_2 - y_1 = y_4 - y_3\));
  • for every pair \((i, j)\) where \(0 \leq i \leq x_2 - x_1\) and \(0 \leq j \leq y_2 - y_1\), the color of cells \((x_1 + i, y_1 + j)\) and \((x_3 + i, y_3 + j)\) are equal.

Count the number of possible batik color combinations, such that the subrectangles \(((a_x, a_y),(a_x + r - 1, a_y + c - 1))\) and \(((b_x, b_y),(b_x + r - 1, b_y + c - 1))\) have the same pattern.

Output the answer modulo \(10^9 + 7\).

Input

The first line contains five integers \(n\), \(m\), \(k\), \(r\), and \(c\) (\(1 \leq n, m \leq 10^9\), \(1 \leq k \leq 10^9\), \(1 \leq r \leq \min(10^6, n)\), \(1 \leq c \leq \min(10^6, m)\)) — the size of the batik, the number of colors, and size of the sub-rectangle.

The second line contains four integers \(a_x\), \(a_y\), \(b_x\), and \(b_y\) (\(1 \leq a_x, b_x \leq n\), \(1 \leq a_y, b_y \leq m\)) — the top-left corners of the first and second sub-rectangle. Both of the sub-rectangles given are inside the grid (\(1 \leq a_x + r - 1\), \(b_x + r - 1 \leq n\), \(1 \leq a_y + c - 1\), \(b_y + c - 1 \leq m\)).

Output

Output an integer denoting the number of possible batik color combinations modulo \(10^9 + 7\).

Note

The following are all \(32\) possible color combinations in the first example.


Примеры
Входные данныеВыходные данные
1 3 3 2 2 2
1 1 2 2
32
2 4 5 170845 2 2
1 4 3 1
756680455

time 2000 ms
memory 512 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
С++ Mingw-w645
Комментарий учителя