Олимпиадный тренинг

Задача . F. Antennas


There are \(n\) equidistant antennas on a line, numbered from \(1\) to \(n\). Each antenna has a power rating, the power of the \(i\)-th antenna is \(p_i\).

The \(i\)-th and the \(j\)-th antenna can communicate directly if and only if their distance is at most the minimum of their powers, i.e., \(|i-j| \leq \min(p_i, p_j)\). Sending a message directly between two such antennas takes \(1\) second.

What is the minimum amount of time necessary to send a message from antenna \(a\) to antenna \(b\), possibly using other antennas as relays?

Input

Each test contains multiple test cases. The first line contains an integer \(t\) (\(1\le t\le 100\,000\)) — the number of test cases. The descriptions of the \(t\) test cases follow.

The first line of each test case contains three integers \(n\), \(a\), \(b\) (\(1 \leq a, b \leq n \leq 200\,000\)) — the number of antennas, and the origin and target antenna.

The second line contains \(n\) integers \(p_1, p_2, \dots, p_n\) (\(1 \leq p_i \leq n\)) — the powers of the antennas.

The sum of the values of \(n\) over all test cases does not exceed \(200\,000\).

Output

For each test case, print the number of seconds needed to trasmit a message from \(a\) to \(b\). It can be shown that under the problem constraints, it is always possible to send such a message.

Note

In the first test case, we must send a message from antenna \(2\) to antenna \(9\). A sequence of communications requiring \(4\) seconds, which is the minimum possible amount of time, is the following:

  • In \(1\) second we send the message from antenna \(2\) to antenna \(1\). This is possible since \(|2-1|\le \min(1, 4) = \min(p_2, p_1)\).
  • In \(1\) second we send the message from antenna \(1\) to antenna \(5\). This is possible since \(|1-5|\le \min(4, 5) = \min(p_1, p_5)\).
  • In \(1\) second we send the message from antenna \(5\) to antenna \(10\). This is possible since \(|5-10|\le \min(5, 5) = \min(p_5, p_{10})\).
  • In \(1\) second we send the message from antenna \(10\) to antenna \(9\). This is possible since \(|10-9|\le \min(5, 1) = \min(p_{10}, p_9)\).

Примеры
Входные данныеВыходные данные
1 3
10 2 9
4 1 1 1 5 1 1 1 1 5
1 1 1
1
3 1 3
3 3 1
4
0
2

time 4000 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
С++ Mingw-w645
Комментарий учителя