Олимпиадный тренинг

Задача . M. Minimum LCM


You are given an integer \(n\).

Your task is to find two positive (greater than \(0\)) integers \(a\) and \(b\) such that \(a+b=n\) and the least common multiple (LCM) of \(a\) and \(b\) is the minimum among all possible values of \(a\) and \(b\). If there are multiple answers, you can print any of them.

Input

The first line contains a single integer \(t\) (\(1 \le t \le 100\)) — the number of test cases.

The first line of each test case contains a single integer \(n\) (\(2 \le n \le 10^9\)).

Output

For each test case, print two positive integers \(a\) and \(b\) — the answer to the problem. If there are multiple answers, you can print any of them.

Note

In the second example, there are \(8\) possible pairs of \(a\) and \(b\):

  • \(a = 1\), \(b = 8\), \(LCM(1, 8) = 8\);
  • \(a = 2\), \(b = 7\), \(LCM(2, 7) = 14\);
  • \(a = 3\), \(b = 6\), \(LCM(3, 6) = 6\);
  • \(a = 4\), \(b = 5\), \(LCM(4, 5) = 20\);
  • \(a = 5\), \(b = 4\), \(LCM(5, 4) = 20\);
  • \(a = 6\), \(b = 3\), \(LCM(6, 3) = 6\);
  • \(a = 7\), \(b = 2\), \(LCM(7, 2) = 14\);
  • \(a = 8\), \(b = 1\), \(LCM(8, 1) = 8\).

In the third example, there are \(5\) possible pairs of \(a\) and \(b\):

  • \(a = 1\), \(b = 4\), \(LCM(1, 4) = 4\);
  • \(a = 2\), \(b = 3\), \(LCM(2, 3) = 6\);
  • \(a = 3\), \(b = 2\), \(LCM(3, 2) = 6\);
  • \(a = 4\), \(b = 1\), \(LCM(4, 1) = 4\).

Примеры
Входные данныеВыходные данные
1 4
2
9
5
10
1 1
3 6
1 4
5 5

time 2000 ms
memory 512 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
 Кол-во
С++ Mingw-w645
Комментарий учителя