Даны два целых числа \(x\) и \(y\). Назовем последовательность \(a\) длины \(n\) модообразной, если \(a_1=x\), и для всех \(1 < i \le n\) значение \(a_{i}\) равно либо \(a_{i-1} + y\), либо \(a_{i-1} \bmod y\). Здесь \(x \bmod y\) обозначает остаток от деления \(x\) на \(y\).
Определите, существует ли модообразная последовательность длины \(n\), сумма элементов которой равна \(S\), и если существует, то найдите любую такую последовательность.
Выходные данные
Для каждого набора входных данных, если искомая последовательность существует, выведите в первой строке «Yes» (без кавычек). Далее, во второй строке выведите \(n\) целых чисел \(a_1, a_2, \ldots, a_n\) через пробел — элементы последовательности \(a\). Если подходящих последовательностей несколько, выведите любую из них.
Если же последовательность не существует, выведите в единственной строке «No».
Вы можете выводить каждую букву в любом регистре (строчную или заглавную). Например, строки «yEs», «yes», «Yes» и «YES» будут приняты как положительный ответ.
Примечание
В первом наборе входных данных условиям удовлетворяет последовательность \([8, 11, 2, 5, 2]\). Таким образом, \(a_1 = 8 = x\), \(a_2 = 11 = a_1 + 3\), \(a_3 = 2 = a_2 \bmod 3\), \(a_4 = 5 = a_3 + 3\), \(a_5 = 2 = a_4 \bmod 3\).
Во втором наборе входных данных первый элемент последовательности должен равняться \(5\), поэтому последовательность \([2, 2, 2]\) не подходит.
Примеры
| № | Входные данные | Выходные данные |
|
1
|
3 5 8 3 28 3 5 3 6 9 1 5 79
|
YES
8 11 2 2 5
NO
NO
|