Олимпиадный тренинг

Задача . кп15-439


Задача

Темы:

На числовой прямой даны два отрезка: P = [10, 22] и Q = [20, 36]. Найдите наименьшую возможную длину отрезка A, при котором формула

\((x \in P) \rightarrow (\lnot (x \in Q) \lor (x \in A))\)

тождественно истинна, то есть принимает значение 1 при любом значении переменной x.


time 500 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя