Олимпиадный тренинг

Задача . кп15-464


Задача

Темы:

На числовой прямой даны два отрезка: P = [10, 20] и Q = [35, 45]. Найдите наименьшую возможную длину отрезка A, при котором формула

\((\lnot (x \in P) \rightarrow (x \in Q)) \land \lnot (x \in A)\)

тождественно ложна, то есть принимает значение 0 при любом значении переменной x.


time 500 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя