Олимпиадный тренинг

Задача . кп15-469


Задача

Темы:

На числовой прямой даны два отрезка: P = [30, 50] и Q = [10, 80]. Найдите наибольшую возможную длину отрезка A, при котором формула

\((x \in A) \rightarrow ((x \in P) \land \lnot (x \in Q))\)

тождественно истинна, то есть принимает значение 1 при любом значении переменной x.


time 500 ms
memory 256 Mb
Правила оформления программ и список ошибок при автоматической проверке задач

Статистика успешных решений по компиляторам
Комментарий учителя