Описание

Ограничение по времени: 1000 ms
Ограничение по памяти: 256 Mb

Ответы на вопросы

Задача: Загадка у костра

Однажды Юрик оказался в лесу у костра, где собрались \(n\) человек. Оказалось, что некоторые из них знакомы друг с другом. Для удобства пронумеруем людей целыми числами от \(1\) до \(n\). Обозначим как \(d_i\) количество людей, сидящих у костра, с которыми знаком \(i\)-й человек. Неожиданно оказалось, что два человека с номерами \(i\) и \(j\) (\(i \ne j\)) знакомы друг с другом тогда и только тогда, когда \(d_i = d_j\).

Вернувшись домой, Юрик задумался, какое минимальное количество пар людей могли быть знакомы, чтобы выполнялось это условие?

Формат входных данных
Единственная строка содержит одно целое число \(n\) (\(1 \le n \le 5\,000\)) — количество людей.

Формат выходных данных
Выведите одно целое число — минимальное количество пар знакомых людей.

 

Замечание
Рассмотрим первый пример из условия. Возможны следующие варианты:

  1. Любые два человека знакомы друг с другом. В этом случае количество пар знакомых людей равно \(\frac{4 \cdot 3}{2} = 6\).

  2. Некоторые три человека попарно знакомы друг с другом, четвертый человек не знаком ни с кем. В этом случае количество пар знакомых людей равно \(3\).


Прикрепите файл с исходным кодом программы:
     
или введите исходный код на языке:


Правила оформления программ и список ошибок при автоматической проверке задач
           

Ваш ответ:

Загруженные файлы:


Нет

Примечание учителя: