Плюсануть
Поделиться
Класснуть
Запинить


Олимпиадный тренинг

Вы можете самостоятельно решать эти задачи столько раз, сколько вам это понадобится.
   

Шахматная доска

Двумерные массивы Клеточная геометрия

Из шахматной доски по границам клеток выпилили связную (не распадающуюся на части) фигуру без дыр. Требуется определить ее периметр.

Входные данные
Сначала вводится число N (1 ≤ N ≤ 64) – количество выпиленных клеток. В следующих N строках вводятся координаты выпиленных клеток, разделенные пробелом (номер строки и столбца – числа от 1 до 8). Каждая выпиленная клетка указывается один раз.

Выходные данные
Выведите одно число – периметр выпиленной фигуры (сторона клетки равна единице).

Примеры
Входные данные Выходные данные Пояснения
1 3
1 1
1 2
2 1
8 Вырезан уголок из трех клеток. Сумма длин его сторон равна 8.
2 1
8 8
4 Вырезана одна клетка. Ее периметр равен 4.

Восстанови многоугольник

Клеточная геометрия Двумерные массивы

Вася нарисовал на клетчатой бумаге многоугольник, все стороны которого проходят по линиям сетки. После этого в каждой клетке он написал число, равное количеству сторон данной клетки, которые принадлежат сторонам многоугольника. Затем он стер многоугольник так, что остался листок бумаги, в каждой клетке которого написано число.

Восстановите нарисованный Васей многоугольник.

Входные данные
В первой строке входных данных содержатся два натуральных числа: Y - количество строк и X - количество столбцов листа (3 <= Y <= 1000, 3 <= X <= 1000). В каждой из следующих Y строк задается по X целых неотрицательных чисел, не превосходящих 4. Ни одна из сторон многоугольника не проходит по границе листа бумаги.

Выходные данные
Выведите искомый многоугольник в следующем формате.

Выходные данные должны содержать Y строк по 2X-1 символов в каждой (по одному символу на клетку и линию между клетками).

В первой строке выведите вертикальные отрезки в верхнем ряду клеток, обозначая их символом | (вертикальная черта - символ с кодом 124) и горизонтальные отрезки, отделяющие первый ряд клеток от следующего, обозначая их символом _ (подчеркивание). Если соответствующий отрезок в данном многоугольнике отсутствует, выведите вместо него символ . (точка). Во второй строке выведите в том же формате вертикальные отрезки во втором ряду и горизонтальные отрезки, отделяющие второй ряд от третьего. И т.д. В каждой строке на нечетных местах могут стоять только символы точка или подчеркивание, на четных местах - символы точка или вертикальная черта.

Гарантируется, что хотя бы одно решение существует. Если решений несколько, выведите любое из них.

Поиск прямоугольников

Динамическое программирование на таблицах Клеточная геометрия


На поле NxM клеток (N строк и M столбцов) положили K прямоугольников один поверх другого в случайном порядке. Длины сторон прямоугольников выражаются целым числом клеток. Прямоугольники не выходят за границы поля. Границы прямоугольников совпадают с границами клеток поля.

Получившуюся ситуацию записали в таблицу чисел (каждой клетке поля соответствует клетка таблицы). Если клетка поля не закрыта прямоугольником, то в соответствующую клетку таблицы записали число 0. Если же клетка закрыта одним или несколькими прямоугольниками, то в соответствующую клетку таблицы записали число, соответствующее номеру самого верхнего прямоугольника, закрывающего эту клетку.

По содержимому таблицы требуется определить положение и размеры прямоугольников.

Гарантируется, что во входных данных содержится информация, которой достаточно для однозначного определения размеров прямоугольников.
 

0 2 2 2 2
0 2 2 2 2
1 1 2 2 2
1 1 0 0 0


Входные данные
В первой строке входного файла записаны целые числа N, M, K (1≤N≤200, 1≤M≤200, 1≤K≤255). Далее следует N строк по M чисел в каждой — содержимое таблицы. Все числа в таблице целые, находятся в диапазоне от 0 до K включительно.

Выходные данные
В выходной файл необходимо выдать K строк. Каждая строка должна описывать соответствующий ее номеру прямоугольник четырьмя числами R C H W (R и C должны описывать координаты левого нижнего угла прямоугольника, а H и W — координаты правого верхнего угла). Числа должны разделяться пробелом.

Оси координат устроены следующим образом: начало координат находится в нижнем левом углу поля, а оси координат направлены вдоль сторон поля (ось Ox — вдоль нижней стороны, а ось Oy — вдоль левой стороны). Клетки поля имеют размер 1x1. Таким образом, координаты левого нижнего угла поля — (0,0), правого верхнего — (M,N). Заметьте, что вы должны вывести координаты углов прямоугольников (как точек) в этой системе координат, а не координаты угловых клеток, покрытых прямоугольниками.