Задача: Путешествие по строке
Скажем, что последовательность строк t1 , ..., tk является путешествием длины k , если для всех i > 1 ti является подстрокой ti - 1 строго меньшей длины. Например, { ab , b } является путешествием, а { ab , c } или { a , a } — нет.
Определим путешествие по строке s как путешествие t1 , ..., tk , все строки которого могут быть вложены в s так, чтобы существовали (возможно, пустые) строки u1 , ..., uk + 1 , такие, что s = u1t1u2 t2 ... uk tk uk + 1 . К примеру, { ab , b } является путешествием по строке для abb , но не для bab , так как соответствующие подстроки расположены справа налево.
Назовём длиной путешествия количество строк, из которых оно состоит. Определите максимально возможную длину путешествия по заданной строке s .
Входные данные
В первой строке задано целое число n ( 1 ≤ n ≤ 500 000 ) — длина строки s .
Во второй строке содержится строка s , состоящая из n строчных английских букв.
Выходные данные
Выведите одно число — наибольшую длину путешествия по строке s .
Примечание
В первом примере путешествием по строке наибольшей длины является { abcd , bc , c } .
Во втором примере подходящим вариантом будет { bb , b } .
Примеры
№ |
Входные данные |
Выходные данные |
1 |
7
abcdbcc |
3 |
2 |
4
bbcb |
2 |
Ваш ответ: