Плюсануть
Поделиться
Класснуть
Запинить


Олимпиадный тренинг

Вы можете самостоятельно решать эти задачи столько раз, сколько вам это понадобится.
   

Самый длинный путь

Алгоритм Флойда

Дан ориентированный граф, рёбрам которого приписаны некоторые неотрицательные веса (длины). Надо найти две вершины, кратчайший путь между которыми имеет наибольшую длину.
 
Входные данные
В первой строке задано число вершин N ≤50. Далее идёт матрица смежности графа, то есть N строк, в каждой из которых записано N чисел. j-ое число в i-ой строке матрицы смежности задает длину ребра, ведущего из i-й вершину в j-ую. Длины могут принимать любые значения от от 0 до 1000000. Гарантируется, что на главной диагонали матрицы стоят нули.
 
Выходные данные
Выведите одно число – длину искомого пути.

Примеры
Входные данные Выходные данные
1
3
0 7 3
7 0 10
2 215 0
10
 

Есть ли цикл?

Обход в глубину Алгоритм Флойда

Дан ориентированный граф. Требуется определить, есть ли в нем цикл.
 
Входные данные
В первой строке вводится число вершин N≤ 50. Далее в N строках следуют по N чисел, каждое из которых – 0 или 1. j-ое число в i-ой строке равно 1 тогда и только тогда, когда существует ребро, идущее из i-ой вершины в j-ую. Гарантируется, что на диагонали матрицы будут стоять нули.
 
Выходные данные
Выведите 0, если в заданном графе цикла нет, и 1, если он есть.

Примеры
Входные данные Выходные данные
1
3
0 1 0
0 0 1
0 0 0
0
2
3
0 1 0
0 0 1
1 0 0
1

Отрицательный цикл-2

Алгоритм Флойда

Дан ориентированный граф. Определить, есть ли в нем цикл отрицательного веса, и если да, то вывести его.
 
Входные данные
В первой строке содержится число N (1 <= N <= 100) – количество вершин графа. В следующих N строках находится по N чисел – матрица смежности графа. Веса ребер по модулю меньше 100000. Если ребра нет, соответствующее значение равно 100000.
 
Выходные данные
В первой строке выведите "YES", если цикл существует, или "NO", в противном случае. При наличии цикла выведите во второй строке количество вершин в нем (считая одинаковые – первую и последнюю), а в третьей строке – вершины, входящие в этот цикл, в порядке обхода. Если циклов несколько, то  выведите любой из них.

Примеры
Входные данные Выходные данные
1
3
100000 100000 -51
100  100000 100000
100000 -50  100000
YES
4
3 2 1 3

Кладоискатель

Алгоритм Флойда Обход в ширину

Кладоискателю Васе попалась карта древнего подземелья. Подземелье представляет собой лабиринт размера N×M (1 ≤ N, M ≤ 100 , N×M ≤ 100). Каждая клетка лабиринта либо пуста и по ней можно пройти, либо содержит стену. Из клетки можно переходить только в смежную по стене клетку (так, у каждой клетки может быть не более 4 смежных).
 
В одной из клеток находится клад, который и хочет достать Вася. В лабиринте есть K входов, из которых Вася может начать свой путь.
 
Требуется определить, с какого входа Васе нужно начать свой путь, чтобы пройденное расстояние до клада было наименьшим. Если таких входов несколько, нужно вывести вход с наименьшим номером.
 
Входные данные
Первая строка содержит 2 числа N и M, задающие размеры лабиринта. Далее следует описание лабиринта: N строк по M символов в каждой. 0 означает, что клетка свободна; 1, что в клетке находится стена. Символ * обозначает клетку с сокровищем (такая клетка в лабиринте ровно одна).
 
В (N+2)-й строке находится число K (1 ≤ K ≤ NxM) -- количество входов в лабиринт. Далее в K строках содержатся координаты входов. Так, в i-й строке содержатся числа xi и yi, означающие,что i-й вход расположен в xi-й строке и в yi-м столбце (1 ≤ xi ≤ N, 1 ≤ yi ≤ M). Гарантируется, что координаты входов попарно различны, и то, что все входы расположены в пустых клетках. Ни один из входов не находится в клетке с сокровищем.
 
Выходные данные
Необходимо вывести одно число - искомый номер входа (нумерация начинается с 1). Если до сокровища невозможно добраться, выведите -1.

Примеры
Входные данные Выходные данные
1
5 5
00000
00000
10*00
01111
00000
4
1 1
1 5
4 1
5 5
1
2
3 3
010
1*1
010
4
1 1
1 3
3 1
3 3
-1

Флойд - существование

Алгоритм Флойда

Дан ориентированный взвешенный граф. По его матрице смежности нужно для каждой пары вершин определить, существует ли кратчайший путь между ними или нет.
 
Комментарий: Кратчайший путь может не существовать по двум причинам:
  • Нет ни одного пути
  • Есть пути сколь угодно маленького веса
     
Входные данные
В первой строке входного файла записано единственное число: N (1 <=N <=100) — количество вершин графа. В следующих N строках по N чисел — матрица смежности графа (j-е число в i-й строке соответствует весу ребра из вершины i в вершину j): число 0 обозначает отсутствие ребра, а любое другое число — наличие ребра соответствующего веса. Все числа по модулю не превышают 100.
 
Выходные данные
Выведите N строк по N чисел. j-е число в i-й строке должно соответствовать кратчайшему пути из вершины i в вершину j. Число должно быть равно 0, если пути не существует, 1, если существует кратчайший путь, и 2, если пути существуют, но бывают пути сколь угодно маленького веса.

Примеры
Входные данные Выходные данные
1
5
0 1 2 0 0
1 0 3 0 0
2 3 0 0 0
0 0 0 0 -1
0 0 0 -1 0 
1 1 1 0 0 
1 1 1 0 0 
1 1 1 0 0 
0 0 0 2 2 
0 0 0 2 2 

Космическое путешествие

Алгоритм Флойда

В MMORPG "Космические торговцы online" скорость перемещения игрока между звёздами ограничена одним парсеком в секунду. С такой скоростью можно быстро добраться до ближайших звёзд, но на путешествие с одного края галактики до другого может потребоваться несколько часов. Для ускорения таких долгих путешествий создатели игры сделали несколько "кротовых нор" — туннелей, соединяющих две точки в пространстве, которые позволяют мгновенно перемещаться между этими точками туда и обратно.

Напишите программу, которая вычисляет минимальное время путешествия, используя информацию о "кротовых норах".

В первой строке ввода содержится целое число N (1 ≤ N ≤ 100). Далее следует строка, содержащая 6 целых чисел — координаты начальной (xs,ys,zs) и конечной (xt,yt,zt) точки путешествия. Далее следует N строк, содержащих 6 целых чисел — координаты концов "кротовых нор". Все координаты измеряются в парсеках и находятся в диапазоне от 0 до 10000, и нет точек с совпадающими координатами.

Вывести минимальное время путешествия в секундах с точностью не менее 10−6.
Примеры
Входные данные Выходные данные
1
1
0 0 0 100 100 0
1 1 1 50 100 10
52.722246

Запросы по Флойду

Алгоритм Флойда

Дан неориентированный взвешенный граф с отрицательными весами, необходимо выдавать информацию о кратчайшем пути между 2 вершинами.

Входные данные
В первой строчке дано целое число n - количество вершин в графе. Дальше на вход подается матрица смежности, в которой -1 означает отсутствие ребра между вершинами. После матрицы идет число k - количество запросов, в следующих k строках содержится по 2 числа, a и b - вершины в запросе.

Выходные данные
В строке должно содержаться k чисел - расстояние между парой чисел из запроса в порядке их ввода, если нельзя добраться из вершины a в вершину b, следует вывести Imp.
 
Примеры
Входные данные Выходные данные
1
3
0 3 -1
3 0 4
-1 4 0
3
1 3
3 2
1 2
7
4
3

Самый короткий путь

Алгоритм Флойда

Дан ориентированный полный граф, рёбрам которого приписаны некоторые веса (длины). Веса могут быть и положительные, и отрицательные, и нулевые. Нас интересует минимум длин всех возможных путей между всеми парами различных вершин этого графа. Нужно будет выяснить, существует ли этот минимум, и, если существует, вычислить его. (Минимума не существует в том случае, если в графе можно найти путь отрицательной длины, сколь угодно большой по модулю, стремящийся к бесконечности).
 
Входные данные
В первой строке задано число вершин N≤50. Далее идёт матрица смежности графа, то есть N строк, в каждой из которых записано N чисел. j-ое число в i-ой строке матрицы смежности задает длину ребра, ведущего из i-й вершину в j-ую. Длины могут принимать любые значения от -1000000 до 1000000. Гарантируется, что на главной диагонали матрицы стоят нули.
 
Выходные данные
Выведите одно число – искомый минимум. Если его не существует, выведите  -1.
Примеры
Входные данные Выходные данные
1
3
0 42 18468 
6335 0 26501 
19170 15725 0 
42
2
3
0 -7 3
-2 0 10
2 215 0 
-1

Отрицательный цикл

Алгоритм Флойда

Дан ориентированный граф. Определить, есть ли в нем цикл отрицательного веса.

Входные данные
В первой строке содержится число N (1 <= N <= 100) – количество вершин графа. В следующих N строках находится по N чисел – матрица смежности графа. Веса ребер по модулю меньше 100000. Если ребра нет, соответствующее значение равно 100000.
 
Выходные данные
В первой строке выведите "YES", если цикл существует, или "NO", в противном случае. 

Примеры
Входные данные Выходные данные
1
3
100000 100000 -51
100  100000 100000
100000 -50  100000
YES

Маршрут кладоискателя

Алгоритм Флойда Обход в ширину

Вася из задачи A по-прежнему занят поиском кладов. Более того, у него появились последователи. Один из таких последователей попросил Васю помочь в своих поисках. Так, по карте сокровищ Васю просят восстановить кратчайший путь до клада. Конфигурация лабиринта совпадает с конфигурацией, описанной в задаче A (поле \(N \times M (1 \le N, M \le 100, N \times M \le 100))\), в одной клетке которого находится клад, в K
 клетках находятся входы в лабиринт).

Требуется вывести искомый путь.

Формат входных данных
Первая строка содержит 2 числа N<=100 и M<=100, задающие размеры лабиринта. Далее следует описание лабиринта: N
 строк по M символов в каждой. 0 означает, что клетка свободна; 1, что в клетке находится стена. Символ * обозначает клетку с сокровищем (такая клетка в лабиринте ровно одна).
В (N+2)-й строке находится число \(K (1 \le K \le N \times M)\) - количество входов в лабиринт. Далее в K строках содержатся координаты входов. Так, в i-й строке содержатся числа \(x_i\) и \(y_i\), означающие, что i-й вход расположен в \(x_i\)-й строке и в \(y_i\)-м столбце \((1 \le x_i \le N, 1\le y_i \le M)\). Гарантируется, что координаты входов попарно различны, и то, что все входы расположены в пустых клетках. Ни один из входов не находится в клетке с сокровищем.

Формат выходных данных
В первой строке вывести одно число - длину кратчайшего маршрута. В следующих строках необходимо вывести кратчайший маршрут. Каждую клетку маршрута (включая начальную и конечную) вывести на отдельной строке в формате \(x_i\) \(y_i\), где \(x_i\)  - строка клетки, а \(y_i\)  - столбец клетки.

Если существует несколько путей минимальной длины, выведите любой. Если до сокровища невозможно добраться, в единственной строке выведите -1.

Примеры
Входные данные Выходные данные
1 5 5
00000
00000
10*00
01111
00000
4
1 1
1 5
4 1
5 5
4
1 1
2 1
2 2
3 2
3 3
2 3 3
010
1*1
010
4
1 1
1 3
3 1
3 3
 
-1

Рейсы во времени

Алгоритм Флойда

Между \(N\) населенными пунктами совершаются пассажирские рейсы на машинах времени.

В момент времени 0 вы находитесь в пункте \(A\). Вам дано расписание рейсов. Требуется оказаться в пункте \(B\) как можно раньше (то есть в наименьший возможный момент времени).

При этом разрешается делать пересадки с одного рейса на другой. Если вы прибываете в некоторый пункт в момент времени \(T\), то вы можете уехать из него любым рейсом, который отправляется из этого пункта в момент времени \(T\) или позднее (но не раньше).

Формат входных данных
Первая строка содержит число \(N\) — количество населенных пунктов (\(1 \le N \le 1000\)). Вторая строка содержит два числа \(A\) и \(B\) — номера начального и конечного пунктов. Третья строка содержит число \(K\) — количество рейсов (\(0 \le K \le 1000\)). Следующие \(K\) строк содержит описания рейсов, по одному на строке. Каждое описание представляет собой четверку целых чисел. Первое число каждой четверки задает номер пункта отправления, второе — время отправления, третье — пункт назначения, четвертое — время прибытия. Номера пунктов — натуральные числа из диапазона от 1 до \(N\). Пункт назначения и пункт отправления могут совпадать. Время измеряется в некоторых абсолютных единицах и задается целым числом, по модулю не превышающим \(10^9\). Поскольку рейсы совершаются на машинах времени, то время прибытия может быть как больше времени отправления, так и меньше, или равным ему.

Гарантируется, что входные данные таковы, что добраться из пункта \(A\) в пункт \(B\) всегда можно.

Формат выходных данных
Выведите минимальное время, когда вы сможете оказаться в пункте \(B\).

Юный поджигатель

Алгоритм Флойда Способы задания графа

На клеточном поле введена система координат так, что центр координат находится в точке пересечения линий сетки  и оси направлены вдоль линий сетки.

На этом поле выложили связную фигуру, состоящую из спичек. Использовались спички двух типов:

  • Спички длины 1 выкладывались по сторонам клеток.
  • Спички длины выкладывались по диагоналям клеток.
Ребенок хочет сжечь фигуру. При этом он может поджечь ее в одной точке, имеющей целочисленные координаты (например, в точке A на рисунке поджигать фигуру нельзя, а в точках B и C — можно).

Известно, что огонь распространяется вдоль спички равномерно (но по каждой спичке — со своей скоростью). Спичка может гореть в нескольких местах (например, когда она загорается с двух концов; или когда в середине диагональной спички огонь перекидывается с одной спички на другую — огонь расползается по вновь подожженной спичке в обе стороны).

Напишите программу, которая определит, в какой точке нужно поджечь фигуру, чтобы она сгорела за минимальное время.

Входные данные
Во входном файле записано сначала число N — количество спичек (1<N<40). Затем идет N пятерок чисел вида X1, Y1, X2, Y2, T, задающих координаты концов спички и время ее сгорания при условии, что она будет подожжена с одного конца (гарантируется, что каждая спичка имеет длину 1 или , все спички образуют связную фигуру, и положение никаких двух спичек не совпадает). Все координаты — целые числа, по модулю не превышающие 200, время сгорания — натуральное число, не превышающее 107.

Выходные данные
Выведите координаты целочисленной точки, в которой нужно поджечь фигуру, чтобы она сгорела за наименьшее время, а затем время, за которое в этом случае фигура сгорит. Время должно быть выведено с точностью не менее 2-х знаков после десятичной точки. Если решений несколько, выведите любое из них.